Patents by Inventor Nicole Welsch

Nicole Welsch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220315698
    Abstract: A method for producing polyether carbonate polyols via the following steps: (i) accumulating alkylene oxide and carbon dioxide on a H-functional starter substance in the presence of a double metal cyanide catalyst or a metal complex catalyst based on the metals zinc and/or cobalt, wherein a reaction mixture containing the polyether carbonate polyol is obtained; and (ii) adding at least one component K to the reaction mixture containing the polyether carbonate polyol, wherein a buffer system suitable for buffering a pH value in the region of pH 3.0 to 9.0 is used as component K, wherein the component K is free from compounds containing P—OH— groups.
    Type: Application
    Filed: July 24, 2020
    Publication date: October 6, 2022
    Inventors: Joerg Hofman, Kai Laemmerhold, Persefoni Hilken, Nicole Welsch, Hartmut Nefzger
  • Patent number: 11419948
    Abstract: Ultra-low crosslinked microgels made of an ultra-low crosslinked polymer are provided. The microgels, also referred to as Platelet-like Particles (PLPs), preferably have <0.5% crosslinking densities. One or more of the polymers are conjugated with a fibrin-binding element or moiety, preferably H6, in an amount effective to confer to the microgel selective binding to fibrin under physiological conditions. The PLPs can recapitulate multiple key functions of platelets including binding, stabilizing and enhancing fibrin clot formation, responsiveness to injury cues, and induction of clot contraction. In a preferred embodiment, the microgel or PLP has little or no binding to soluble fibrinogen under physiological conditions compared to its binding to fibrin. The microgels or PLPs are prepared using crosslinker-free synthesis conditions, and can promote or induce clotting and clot contraction.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: August 23, 2022
    Assignees: Georgia Tech Research Corporation, University of Virginia Patent Foundation, North Carolina State University
    Inventors: Thomas H. Barker, Ashley Carson Brown, Louis Andrew Lyon, Sarah E. Stabenfeldt, Nicole Welsch, John Nicosia
  • Publication number: 20220227928
    Abstract: A method for preparing polyether carbonate polyols by means of the following steps: (i) adding alkylene oxide and carbon dioxide onto an H-functional starter substance in the presence of a double metal cyanide catalyst or a metal complex catalyst based on the metals zinc and/or cobalt to obtain a reaction mixture containing the polyether carbonate polyol, (ii) introducing at least one component K to the reaction mixture containing the polyether carbonate polyol, characterized in that the component K is at least one compound selected from the group consisting of monocarboxylic acids, polycarboxylic acids, hydroxycarboxylic acids and vinylogous carboxylic acids, wherein compounds containing a phosphorus-oxygen bond or compounds of phosphorus that can form one or more P—O bonds through reaction with OH-functional compounds, and acetic acid are excluded from component K.
    Type: Application
    Filed: June 3, 2020
    Publication date: July 21, 2022
    Inventors: Kai Laemmerhold, Joerg Hofmann, Persefoni Hilken, Nicole Welsch, Hartmut Nefzger
  • Publication number: 20220177638
    Abstract: The invention relates to flame-retardant polyurethane foam materials or polyurethane/polyisocyanurate foam materials (also referred to individually or collectively as “PUR/PIR foam materials” below) and to methods for producing PUR/PIR foam materials by reacting a reaction mixture containing A1 an isocyanate-reactive component, A2 a propellant, A3 a catalyst, A4 optionally an additive, and A5 a flame retardant with B an isocyanate component, wherein the production is carried out using an index of 80 to 600. The invention is characterized in that the flame retardant A5 contains (hydroxymethyl)phosphonate and optionally the dimer thereof as component A5.1.
    Type: Application
    Filed: March 30, 2020
    Publication date: June 9, 2022
    Inventors: Rolf Albach, Stephan Schleiermacher, Horst-Josef Schaefer, Hans-Peter Huber, Andre Neumann, Nicole Welsch, Catherine Loevenich
  • Patent number: 11345775
    Abstract: The present invention relates to a method for producing polyurethane foams by reacting an isocyanate component with an isocyanate-reactive component comprising at least one polyethercarbonate polyol, the reaction taking place in the presence of a component K selected from one or more compounds from the group consisting of K1 esters of mono- or polybasic carboxylic acids whose (first) dissociation has a pKa of 0.5 to 4.0, K2 mono-, di- and polysulfonates of mono- and polyfunctional alcohols, and K3 one or more compounds from the group consisting of K 3.1 esters of phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, phosphonous acid and phosphinous acid, these esters each containing no P—OH group, K3.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: May 31, 2022
    Assignee: Covestro Deutschland AG
    Inventors: Bert Klesczewski, Jörg Hofmann, Karsten Malsch, Nicole Welsch, Klaus Lorenz, Hartmut Nefzger, Kai Laemmerhold
  • Patent number: 11279809
    Abstract: The invention relates to flame-proofed polyurethane hard foam material or polyurethane/polyisocyanurate hard foam material (designated below individually or jointly also as “PUR/PIR hard foam material”) comprising phosphinates (also hypophosphite), and to a method for producing PUR/PIR hard foam materials through the implementation of a reaction mixture containing A1 an isocyanate-reactive component, A2 propellant, A3 catalyst, A4 optionally additive, A5 flame-proofing agent, B an isocyanate component, characterised in that the flame-proofing agent A5 contains a phosphine according to the formula (I)M[(R)2PO2]n, where R=in each case stands for H, C1- to C4-(hydroxy-)alkyl group or benzyl group, M=an element of the main groups 1 to 3, wherein hydrogen is excepted, and n=the number of the main group of M, and the proportion of the phosphine according to the formula (I) is 0.1 to 15 wt %, based on the total mass of components A1 to A5.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: March 22, 2022
    Assignee: Covestro Intellectual Property GmbH & Co. KG
    Inventors: Rolf Albach, Torsten Hagen, Torsten Heinemann, Nicole Welsch
  • Publication number: 20210309823
    Abstract: The invention relates to flame-proofed polyurethane hard foam material or polyurethane/polyisocyanurate hard foam material (designated below individually or jointly also as “PUR/PIR hard foam material”) comprising phosphinates (also hypophosphite), and to a method for producing PUR/PIR hard foam materials through the implementation of a reaction mixture containing A1 an isocyanate-reactive component, A2 propellant, A3 catalyst, A4 optionally additive, A5 flame-proofing agent, B an isocyanate component, characterised in that the flame-proofing agent A5 contains a phosphine according to the formula (I)M[(R)2PO2]n, where R=in each case stands for H, C1- to C4-(hydroxy-)alkyl group or benzyl group, M=an element of the main groups 1 to 3, wherein hydrogen is excepted, and n=the number of the main group of M, and the proportion of the phosphine according to the formula (I) is 0.1 to 15 wt %, based on the total mass of components A1 to A5.
    Type: Application
    Filed: August 2, 2019
    Publication date: October 7, 2021
    Inventors: Rolf Albach, Torsten Hagen, Torsten Heinemann, Nicole Welsch
  • Publication number: 20210163662
    Abstract: The invention relates to a process for producing polyurethane/polyisocyanurate rigid foams by reacting a specific reaction mixture in the presence of a catalyst component containing potassium formate and to the polyurethane/polyisocyanurate rigid foams produced according to said method.
    Type: Application
    Filed: April 9, 2019
    Publication date: June 3, 2021
    Inventors: Ralf Koester, Nicole Welsch, Rene Abels, Inge Tinnefeld
  • Publication number: 20210163663
    Abstract: The invention relates to a process for producing polyurethane/polyisocyanurate rigid foams by reacting a specific reaction mixture in the presence of a catalyst component containing potassium formate and an amine, and to the polyurethane/polyisocyanurate rigid foams produced according to said method.
    Type: Application
    Filed: April 9, 2019
    Publication date: June 3, 2021
    Inventors: Nicole Welsch, Ralf Koester, Rene Abels, Inge Tinnefeld
  • Patent number: 10836858
    Abstract: The invention relates to a method for producing polyether carbonate polyols by adding alkylene oxides and carbon dioxide to an H-functional starter substance in the presence of a double metal cyanide (DMC) catalyst or in the presence of a metal complex catalyst based on the metals zinc and/or cobalt, wherein (?) alkylene oxide and carbon dioxide are added to an H-functional starter substance in a reactor with a total pressure (absolute) of 5 to 120 bar in the presence of a double metal cyanide catalyst or in the presence of a metal complex catalyst based on the metals zinc and/or cobalt, and a reaction mixture containing the polyether carbonate polyol is obtained, (?) the reaction mixture obtained in step (?) remains in the reactor or is optionally continuously transferred to a downstream reactor at a starting total pressure (absolute) of 5 to 120 bar, the content of free alkylene oxide in the reaction mixture being reduced in the course of a downstream reaction in each case, and the total pressure (absolute)
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: November 17, 2020
    Assignee: Covestro Deutschland AG
    Inventors: Jörg Hofmann, Urs Rauwald, Stefanie Braun, Matthias Wohak, Hartmut Nefzger, Nicole Welsch, Aurel Wolf, Michael Traving, Lars Krueger
  • Publication number: 20190367770
    Abstract: The invention relates to a process for producing rigid polyurethane (PUR) and polyurethane/polyisocyanurate (PUR/PIR) foams, comprising the steps of i) producing a reaction mixture containing the components A) an isocyanate-reactive component, B) a polyisocyanate component, and C) a blowing agent, and ii) applying the reaction mixture by using a system comprising at least one casting device. The casting device (100) having: a supply port (12) for feeding the reaction mixture (10), at least one discharge gap (13) extending in a transverse direction (Q) for the discharge of the reaction mixture (10), two gap-forming plates (14) arranged opposite one another, a gap space (15) extending between the gap-forming plates (14) above the discharge gap (13) in a height direction (H), wherein the reaction mixture can be introduced into the gap space (15), distributed over the length of the supply duct (16).
    Type: Application
    Filed: January 30, 2018
    Publication date: December 5, 2019
    Inventors: Dirk Brüning, Achim Symannek, Stephan Schleiermacher, Dirk Steinmeister, Catherine Loevenich, Nicole Welsch
  • Publication number: 20190322801
    Abstract: The invention relates to a method for producing polyether carbonate polyols by adding alkylene oxides and carbon dioxide to an H-functional starter substance in the presence of a double metal cyanide (DMC) catalyst or in the presence of a metal complex catalyst based on the metals zinc and/or cobalt, wherein (?) alkylene oxide and carbon dioxide are added to an H-functional starter substance in a reactor with a total pressure (absolute) of 5 to 120 bar in the presence of a double metal cyanide catalyst or in the presence of a metal complex catalyst based on the metals zinc and/or cobalt, and a reaction mixture containing the polyether carbonate polyol is obtained, (?) the reaction mixture obtained in step (?) remains in the reactor or is optionally continuously transferred to a downstream reactor at a starting total pressure (absolute) of 5 to 120 bar, the content of free alkylene oxide in the reaction mixture being reduced in the course of a downstream reaction in each case, and the total pressure (absolute)
    Type: Application
    Filed: June 20, 2017
    Publication date: October 24, 2019
    Inventors: Jörg HOFMANN, Urs RAUWALD, Stefanie BRAUN, Matthias WOHAK, Hartmut NEFZGER, Nicole WELSCH, Aurel WOLF, Michael TRAVING, Lars KRUEGER
  • Publication number: 20190224333
    Abstract: Ultra-low crosslinked microgels made of an ultra-low crosslinked polymer are provided. The microgels, also referred to as Platelet-like Particles (PLPs), preferably have <0.5% crosslinking densities. One or more of the polymers are conjugated with a fibrin-binding element or moiety, preferably H6, in an amount effective to confer to the microgel selective binding to fibrin under physiological conditions. The PLPs can recapitulate multiple key functions of platelets including binding, stabilizing and enhancing fibrin clot formation, responsiveness to injury cues, and induction of clot contraction. In a preferred embodiment, the microgel or PLP has little or no binding to soluble fibrinogen under physiological conditions compared to its binding to fibrin. The microgels or PLPs are prepared using crosslinker-free synthesis conditions, and can promote or induce clotting and clot contraction.
    Type: Application
    Filed: February 4, 2019
    Publication date: July 25, 2019
    Inventors: Thomas H. Barker, Ashley Carson Brown, Louis Andrew Lyon, Sarah E. Stabenfeldt, Nicole Welsch, John Nicosia
  • Patent number: 10195304
    Abstract: Ultra-low crosslinked microgels made of an ultra-low crosslinked polymer are provided. The microgels, also referred to as Platelet-like Particles (PLPs), preferably have <0.5% crosslinking densities. One or more of the polymers are conjugated with a fibrin-binding element or moiety, preferably H6, in an amount effective to confer to the microgel selective binding to fibrin under physiological conditions. The PLPs can recapitulate multiple key functions of platelets including binding, stabilizing and enhancing fibrin clot formation, responsiveness to injury cues, and induction of clot contraction. In a preferred embodiment, the microgel or PLP has little or no binding to soluble fibrinogen under physiological conditions compared to its binding to fibrin. The microgels or PLPs are prepared using crosslinker-free synthesis conditions, and can promote or induce clotting and clot contraction.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: February 5, 2019
    Assignee: Georgia Tech Research Corporation
    Inventors: Thomas H. Barker, Ashley Carson Brown, Louis Andrew Lyon, Sarah E. Stabenfeldt, Nicole Welsch
  • Publication number: 20180273674
    Abstract: The present invention relates to a method for producing polyurethane foams by reacting an isocyanate component with an isocyanate-reactive component comprising at least one polyethercarbonate polyol, the reaction taking place in the presence of a component K selected from one or more compounds from the group consisting of K1 esters of mono- or polybasic carboxylic acids whose (first) dissociation has a pKa of 0.5 to 4.0, K2 mono-, di- and polysulfonates of mono- and polyfunctional alcohols, and K3 one or more compounds from the group consisting of K 3.1 esters of phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, phosphonous acid and phosphinous acid, these esters each containing no P—OH group, K3.
    Type: Application
    Filed: December 6, 2016
    Publication date: September 27, 2018
    Inventors: Bert Klesczewski, Jörg Hofmann, Karsten Malsch, Nicole Welsch, Klaus Lorenz, Hartmut Nefzger, Kai Laemmerhold
  • Publication number: 20160271292
    Abstract: Ultra-low crosslinked microgels made of an ultra-low crosslinked polymer are provided. The microgels, also referred to as Platelet-like Particles (PLPs), preferably have <0.5% crosslinking densities. One or more of the polymers are conjugated with a fibrin-binding element or moiety, preferably H6, in an amount effective to confer to the microgel selective binding to fibrin under physiological conditions. The PLPs can recapitulate multiple key functions of platelets including binding, stabilizing and enhancing fibrin clot formation, responsiveness to injury cues, and induction of clot contraction. In a preferred embodiment, the microgel or PLP has little or no binding to soluble fibrinogen under physiological conditions compared to its binding to fibrin. The microgels or PLPs are prepared using crosslinker-free synthesis conditions, and can promote or induce clotting and clot contraction.
    Type: Application
    Filed: November 11, 2014
    Publication date: September 22, 2016
    Inventors: Thomas H. Barker, Ashley Carson Brown, Louis Andrew Lyon, Sarah E. Stabenfeldt, Nicole Welsch