Patents by Inventor Nien-Chung Li

Nien-Chung Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230335637
    Abstract: A high voltage semiconductor device includes a semiconductor substrate, an isolation structure, a gate oxide layer, and a gate structure. The semiconductor substrate includes a channel region, and at least a part of the isolation structure is disposed in the semiconductor substrate and surrounds the channel region. The gate oxide layer is disposed on the semiconductor substrate, and the gate oxide layer includes a first portion and a second portion. The second portion is disposed at two opposite sides of the first portion in a horizontal direction, and a thickness of the first portion is greater than a thickness of the second portion. The gate structure is disposed on the gate oxide layer and the isolation structure.
    Type: Application
    Filed: April 27, 2023
    Publication date: October 19, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Tsung-Yu Yang, Shin-Hung Li, Nien-Chung LI, Chang-Po Hsiung
  • Publication number: 20230335638
    Abstract: A high voltage semiconductor device includes a semiconductor substrate, an isolation structure, a gate oxide layer, and a gate structure. The semiconductor substrate includes a channel region, and at least a part of the isolation structure is disposed in the semiconductor substrate and surrounds the channel region. The gate oxide layer is disposed on the semiconductor substrate, and the gate oxide layer includes a first portion and a second portion. The second portion is disposed at two opposite sides of the first portion in a horizontal direction, and a thickness of the first portion is greater than a thickness of the second portion. The gate structure is disposed on the gate oxide layer and the isolation structure.
    Type: Application
    Filed: April 27, 2023
    Publication date: October 19, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Tsung-Yu Yang, Shin-Hung Li, Nien-Chung Li, Chang-Po Hsiung
  • Patent number: 11682726
    Abstract: A high voltage semiconductor device includes a semiconductor substrate, an isolation structure, a gate oxide layer, and a gate structure. The semiconductor substrate includes a channel region, and at least a part of the isolation structure is disposed in the semiconductor substrate and surrounds the channel region. The gate oxide layer is disposed on the semiconductor substrate, and the gate oxide layer includes a first portion and a second portion. The second portion is disposed at two opposite sides of the first portion in a horizontal direction, and a thickness of the first portion is greater than a thickness of the second portion. The gate structure is disposed on the gate oxide layer and the isolation structure.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: June 20, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tsung-Yu Yang, Shin-Hung Li, Nien-Chung Li, Chang-Po Hsiung
  • Patent number: 11495681
    Abstract: A semiconductor device includes a semiconductor substrate, a recess, a first gate oxide layer, and a gate structure. The semiconductor substrate includes a first region and a second region adjacent to the first region. The recess is disposed in the first region of the semiconductor substrate, and an edge of the recess is located at an interface between the first region and the second region. At least a part of the first gate oxide layer is disposed in the recess. The first gate oxide layer includes a hump portion disposed adjacent to the edge of the recess, and a height of the hump portion is less than a depth of the recess. The gate structure is disposed on the first region and the second region of the semiconductor substrate, and the gate structure overlaps the hump portion of the first gate oxide layer in a vertical direction.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: November 8, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chang-Po Hsiung, Ching-Chung Yang, Shan-Shi Huang, Shin-Hung Li, Nien-Chung Li, Wen-Fang Lee, Chiu-Te Lee, Chih-Kai Hsu, Chun-Ya Chiu, Chin-Hung Chen, Chia-Jung Hsu, Ssu-I Fu, Yu-Hsiang Lin
  • Publication number: 20220209009
    Abstract: A high voltage semiconductor device includes a semiconductor substrate, an isolation structure, a gate oxide layer, and a gate structure. The semiconductor substrate includes a channel region, and at least a part of the isolation structure is disposed in the semiconductor substrate and surrounds the channel region. The gate oxide layer is disposed on the semiconductor substrate, and the gate oxide layer includes a first portion and a second portion. The second portion is disposed at two opposite sides of the first portion in a horizontal direction, and a thickness of the first portion is greater than a thickness of the second portion. The gate structure is disposed on the gate oxide layer and the isolation structure.
    Type: Application
    Filed: January 27, 2021
    Publication date: June 30, 2022
    Inventors: Tsung-Yu Yang, Shin-Hung Li, Nien-Chung Li, Chang-Po Hsiung
  • Publication number: 20220085210
    Abstract: A semiconductor device includes a semiconductor substrate, a recess, a first gate oxide layer, and a gate structure. The semiconductor substrate includes a first region and a second region adjacent to the first region. The recess is disposed in the first region of the semiconductor substrate, and an edge of the recess is located at an interface between the first region and the second region. At least a part of the first gate oxide layer is disposed in the recess. The first gate oxide layer includes a hump portion disposed adjacent to the edge of the recess, and a height of the hump portion is less than a depth of the recess. The gate structure is disposed on the first region and the second region of the semiconductor substrate, and the gate structure overlaps the hump portion of the first gate oxide layer in a vertical direction.
    Type: Application
    Filed: October 12, 2020
    Publication date: March 17, 2022
    Inventors: Chang-Po Hsiung, Ching-Chung Yang, Shan-Shi Huang, Shin-Hung Li, Nien-Chung Li, Wen-Fang Lee, Chiu-Te Lee, Chih-Kai Hsu, Chun-Ya Chiu, Chin-Hung Chen, Chia-Jung Hsu, Ssu-I Fu, Yu-Hsiang Lin
  • Patent number: 10535734
    Abstract: Method for fabricating semiconductor device, including semiconductor layer having first device region and second device region. A shallow trench isolation (STI) structure is in the semiconductor layer and located at periphery of the first and second device regions. A first and second insulating layers are on the semiconductor layer and respectively located in the first and second device regions. A first gate structure is located on the first insulating layer. A source region and a drain region are in the semiconductor layer and are located at two sides of the first gate structure. A gate doped region is in a surface region of the semiconductor layer in the second device region to serve as a second gate structure. A channel layer is located on the second insulating layer. A source layer and a drain layer are on the STI structure and are located at two sides of the channel layer.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: January 14, 2020
    Assignee: United Microelectronics Corp.
    Inventors: Shin-Hung Li, Kuan-Chuan Chen, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Patent number: 10497805
    Abstract: A semiconductor structure and a manufacturing method of a semiconductor structure are provided. The semiconductor structure includes a semiconductor substrate, a gate, a first diffusion region and a second diffusion region. The gate is disposed on the semiconductor substrate and extends along a first direction. The first diffusion region is formed in the semiconductor substrate, and the second diffusion region is formed in the first diffusion region. The first diffusion region has a first portion located underneath the gate and a second portion protruded from a lateral side of the gate, the first portion has a first length parallel to the first direction, the second portion has a second length parallel to the first direction, and the first length is larger than the second length.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: December 3, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shin-Hung Li, Kuan-Chuan Chen, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Patent number: 10475903
    Abstract: A transistor with dual spacers includes a gate, a first dual spacer and a second inner spacer. The gate is disposed on a substrate, wherein the gate includes a gate dielectric layer and a gate electrode, and the gate dielectric layer protrudes from the gate electrode and covers the substrate. The first dual spacer is disposed on the gate dielectric layer beside the gate, wherein the first dual spacer includes a first inner spacer and a first outer spacer. The second inner spacer having an L-shaped profile is disposed on the gate dielectric layer beside the first dual spacer. The present invention also provides a method of forming said transistor with dual spacers.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: November 12, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Ling Wang, Ping-Hung Chiang, Chang-Po Hsiung, Chia-Wen Lu, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Publication number: 20190326398
    Abstract: Method for fabricating semiconductor device, including semiconductor layer having first device region and second device region. A shallow trench isolation (STI) structure is in the semiconductor layer and located at periphery of the first and second device regions. A first and second insulating layers are on the semiconductor layer and respectively located in the first and second device regions. A first gate structure is located on the first insulating layer. A source region and a drain region are in the semiconductor layer and are located at two sides of the first gate structure. A gate doped region is in a surface region of the semiconductor layer in the second device region to serve as a second gate structure. A channel layer is located on the second insulating layer. A source layer and a drain layer are on the STI structure and are located at two sides of the channel layer.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Applicant: United Microelectronics Corp.
    Inventors: SHIN-HUNG LI, Kuan-Chuan Chen, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Patent number: 10453938
    Abstract: A transistor with dual spacers includes a gate, a first dual spacer and a second inner spacer. The gate is disposed on a substrate, wherein the gate includes a gate dielectric layer and a gate electrode, and the gate dielectric layer protrudes from the gate electrode and covers the substrate. The first dual spacer is disposed on the gate dielectric layer beside the gate, wherein the first dual spacer includes a first inner spacer and a first outer spacer. The second inner spacer having an L-shaped profile is disposed on the gate dielectric layer beside the first dual spacer. The present invention also provides a method of forming said transistor with dual spacers.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: October 22, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Ling Wang, Ping-Hung Chiang, Chang-Po Hsiung, Chia-Wen Lu, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Patent number: 10411088
    Abstract: A semiconductor device including a substrate and a shallow trench isolation (STI) structure is provided. The substrate has a first voltage area and a second voltage area. A top surface of the substrate in the second voltage area is higher than a top surface of the substrate in the first voltage area, and a trench is defined in the substrate in between the first and second voltage area. The STI structure is located in the substrate within the trench, wherein a first portion of the STI structure is located in the first voltage area, a second portion of the STI structure is located in the second voltage area, and a step height difference exist in between a bottom surface of the first portion of the STI structure in the first voltage area and a bottom surface of the second portion of the STI structure in the second voltage area.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: September 10, 2019
    Assignee: United Microelectronics Corp.
    Inventors: Chang-Po Hsiung, Ping-Hung Chiang, Shih-Chieh Pu, Chia-Lin Wang, Nien-Chung Li, Wen-Fang Lee, Shih-Yin Hsiao, Chih-Chung Wang
  • Patent number: 10396157
    Abstract: A semiconductor device includes semiconductor layer having first device region and second device region. A shallow trench isolation (STI) structure is in the semiconductor layer and located at periphery of the first and second device regions. A first and second insulating layers are on the semiconductor layer and respectively located in the first and second device regions. A first gate structure is located on the first insulating layer. A source region and a drain region are in the semiconductor layer and are located at two sides of the first gate structure. A gate doped region is in a surface region of the semiconductor layer in the second device region to serve as a second gate structure. A channel layer is located on the second insulating layer. A source layer and a drain layer are on the STI structure and are located at two sides of the channel layer.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: August 27, 2019
    Assignee: United Microelectronics Corp.
    Inventors: Shin-Hung Li, Kuan-Chuan Chen, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Publication number: 20190245038
    Abstract: A semiconductor device includes semiconductor layer having first device region and second device region. A shallow trench isolation (STI) structure is in the semiconductor layer and located at periphery of the first and second device regions. A first and second insulating layers are on the semiconductor layer and respectively located in the first and second device regions. A first gate structure is located on the first insulating layer. A source region and a drain region are in the semiconductor layer and are located at two sides of the first gate structure. A gate doped region is in a surface region of the semiconductor layer in the second device region to serve as a second gate structure. A channel layer is located on the second insulating layer. A source layer and a drain layer are on the STI structure and are located at two sides of the channel layer.
    Type: Application
    Filed: March 6, 2018
    Publication date: August 8, 2019
    Applicant: United Microelectronics Corp.
    Inventors: Shin-Hung Li, Kuan-Chuan Chen, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Publication number: 20190157421
    Abstract: A transistor with dual spacers includes a gate, a first dual spacer and a second inner spacer. The gate is disposed on a substrate, wherein the gate includes a gate dielectric layer and a gate electrode, and the gate dielectric layer protrudes from the gate electrode and covers the substrate. The first dual spacer is disposed on the gate dielectric layer beside the gate, wherein the first dual spacer includes a first inner spacer and a first outer spacer. The second inner spacer having an L-shaped profile is disposed on the gate dielectric layer beside the first dual spacer. The present invention also provides a method of forming said transistor with dual spacers.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Chia-Ling Wang, Ping-Hung Chiang, Chang-Po Hsiung, Chia-Wen Lu, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Publication number: 20190157418
    Abstract: A transistor with dual spacers includes a gate, a first dual spacer and a second inner spacer. The gate is disposed on a substrate, wherein the gate includes a gate dielectric layer and a gate electrode, and the gate dielectric layer protrudes from the gate electrode and covers the substrate. The first dual spacer is disposed on the gate dielectric layer beside the gate, wherein the first dual spacer includes a first inner spacer and a first outer spacer. The second inner spacer having an L-shaped profile is disposed on the gate dielectric layer beside the first dual spacer. The present invention also provides a method of forming said transistor with dual spacers.
    Type: Application
    Filed: December 18, 2017
    Publication date: May 23, 2019
    Inventors: Chia-Ling Wang, Ping-Hung Chiang, Chang-Po Hsiung, Chia-Wen Lu, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Patent number: 10290718
    Abstract: A metal-oxide semiconductor transistor includes a substrate, a gate insulating layer disposed on a surface of the substrate, and a metal gate disposed on the gate insulating layer, wherein at least one of the length or the width of the metal gate is greater than or equal to approximately 320 nanometers, and the metal gate has at least one plug hole. The metal-oxide semiconductor transistor further includes at least one insulating plug disposed in the plug hole and two diffusion regions disposed respectively at two sides of the metal gate in the substrate.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: May 14, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Yin Hsiao, Ching-Chung Yang, Wen-Fang Lee, Nien-Chung Li, Chih-Chung Wang
  • Publication number: 20190115469
    Abstract: A semiconductor structure and a manufacturing method of a semiconductor structure are provided. The semiconductor structure includes a semiconductor substrate, a gate, a first diffusion region and a second diffusion region. The gate is disposed on the semiconductor substrate and extends along a first direction. The first diffusion region is formed in the semiconductor substrate, and the second diffusion region is formed in the first diffusion region. The first diffusion region has a first portion located underneath the gate and a second portion protruded from a lateral side of the gate, the first portion has a first length parallel to the first direction, the second portion has a second length parallel to the first direction, and the first length is larger than the second length.
    Type: Application
    Filed: August 14, 2018
    Publication date: April 18, 2019
    Inventors: Shin-Hung Li, Kuan-Chuan Chen, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Publication number: 20190103460
    Abstract: A semiconductor transistor device is provided. The semiconductor transistor device includes a semiconductor substrate, a gate structure, a first isolation structure, a first doped region, and a first extra-contact structure. The gate structure is disposed on the semiconductor substrate, and the semiconductor substrate has a first region and a second region respectively located on two opposite sides of the gate structure. The first isolation structure and the first doped region are disposed in the first region of the semiconductor substrate. The first extra-contact structure is disposed on the semiconductor structure. The first extra-contact structure is located between the gate structure and the first doped region and penetrating into the first isolation structure in the first region of the semiconductor substrate, and the first doped region is electrically coupled to the first extra-contact structure.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: Chang-Po Hsiung, Ping-Hung Chiang, Chia-Lin Wang, Chia-Wen Lu, Nien-Chung Li, Wen-Fang Lee, Chih-Chung Wang
  • Patent number: 10204996
    Abstract: A method of forming a gate layout includes providing a gate layout design diagram comprising at least one gate pattern, disposing at least one insulating plug pattern in the gate pattern for producing a modified gate layout in a case where any one of a length and a width of the gate pattern is greater than or equal to a predetermined size, and outputting and manufacturing the modified gate layout onto a photomask. The predetermined size is determined by a process ability limit, and the process ability limit is a smallest gate size causing gate dishing when a chemical mechanical polishing process is performed to a gate.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: February 12, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Yin Hsiao, Ching-Chung Yang, Wen-Fang Lee, Nien-Chung Li, Chih-Chung Wang