Patents by Inventor Nigel D. Stepp

Nigel D. Stepp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200125930
    Abstract: A method for retraining an artificial neural network trained on data from an old task includes training the artificial neural network on data from a new task different than the old task, calculating a drift, utilizing Sliced Wasserstein Distance, in activation distributions of a series of hidden layer nodes during the training of the artificial neural network with the new task, calculating a number of additional nodes to add to at least one hidden layer based on the drift in the activation distributions, resetting connection weights between input layer nodes, hidden layer nodes, and output layer nodes to values before the training of the artificial neural network on the data from the new task, adding the additional nodes to the at least one hidden layer, and training the artificial neural network on data from the new task.
    Type: Application
    Filed: September 5, 2019
    Publication date: April 23, 2020
    Inventors: Charles E. Martin, Nicholas A. Ketz, Praveen K. Pilly, Soheil Kolouri, Michael D. Howard, Nigel D. Stepp
  • Publication number: 20200026287
    Abstract: Described is a system for online vehicle recognition in an autonomous driving environment. Using a learning network comprising an unsupervised learning component and a supervised learning component, images of moving vehicles extracted from videos captured in the autonomous driving environment are learned and classified. Vehicle feature data is extracted from input moving vehicle images. The extracted vehicle feature data is clustered into different vehicle classes using the unsupervised learning component. Vehicle class labels for the different vehicle classes are generated using the supervised learning component. Based on a vehicle class label for a moving vehicle in the autonomous driving environment, the system selects an action to be performed by the autonomous vehicle, and causes the selected action to be performed by the autonomous vehicle in the autonomous driving environment.
    Type: Application
    Filed: July 23, 2019
    Publication date: January 23, 2020
    Inventors: Qin Jiang, Youngkwan Cho, Nigel D. Stepp, Steven W. Skorheim, Vincent De Sapio, Praveen K. Pilly, Ruggero Scorcioni
  • Publication number: 20200026981
    Abstract: Described is a system for computing conditional probabilities of random variables for Bayesian inference. The system implements a spiking neural network of neurons to compute the conditional probability of two random variables X and Y. The spiking neural network includes an increment path for a synaptic weight that is proportional to a product of the synaptic weight and a probability of X, a decrement path for the synaptic weight that is proportional to a probability of X, Y, and delay and spike timing dependent plasticity (STDP) parameters such that the synaptic weight increases and decreases with the same magnitude for a single firing event.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 23, 2020
    Inventors: Hao-Yuan Chang, Aruna Jammalamadaka, Nigel D. Stepp
  • Publication number: 20190370598
    Abstract: Described is a system for detecting change of context in a video stream on an autonomous platform. The system extracts salient patches from image frames in the video stream. Each salient patch is translated to a concept vector. A recurrent neural network is enervated with the concept vector, resulting in activations of the recurrent neural network. The activations are classified, and the classified activations are mapped onto context classes. A change in context class is detected in the image frames, and the system causes the autonomous platform to perform an automatic operation to adapt to the change of context class.
    Type: Application
    Filed: May 17, 2019
    Publication date: December 5, 2019
    Inventors: Charles E. Martin, Nigel D. Stepp, Soheil Kolouri, Heiko Hoffmann
  • Publication number: 20190318241
    Abstract: Described is a system for estimating conditional probabilities for operation of a mobile device. Input data streams from first and second mobile device sensors are input into a neuronal network, where the first and second input data streams are converted into variable spiking rates of first and second neurons. The system learns a conditional probability between the first and second input data streams. A synaptic weight of interest between the first and second neurons converges to a fixed-point value, where the fixed-point value corresponds to the conditional probability. Based on the conditional probability and a new input data stream, a probability of an event is estimated. Based on the probability of the event, the system causes the mobile device to perform a mobile device operation.
    Type: Application
    Filed: March 6, 2019
    Publication date: October 17, 2019
    Inventors: Aruna Jammalamadaka, Nigel D. Stepp
  • Publication number: 20190318235
    Abstract: Described is a system for performing probabilistic computations on mobile platform sensor data. The system translates a Bayesian model representing input mobile platform sensor data to a spiking neuronal network unit that implements the Bayesian model. Using the spiking neuronal network unit, conditional probabilities are computed for the input mobile platform sensor data, where the input mobile platform sensor data is a time series of mobile platform error codes encoded as neuronal spikes. The neuronal spikes are decoded and represent a mobile platform failure mode. The system causes the mobile platform to initiate a mitigation action based on the mobile platform failure mode.
    Type: Application
    Filed: March 6, 2019
    Publication date: October 17, 2019
    Inventors: Nigel D. Stepp, Aruna Jammalamadaka
  • Publication number: 20190303568
    Abstract: Described is neuromorphic system for authorized user detection. The system includes a client device comprising a plurality of sensor types providing streaming sensor data and one or more processors. The one or more processors include an input processing component and an output processing component. A neuromorphic electronic component is embedded in or on the client device for continuously monitoring the streaming sensor data and generating out-spikes based on the streaming sensor data. Further, the output processing component classifies the streaming sensor data based on the out-spikes to detect an anomalous signal and classify the anomalous signal.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 3, 2019
    Inventors: Richard J. Patrick, Nigel D. Stepp, Vincent De Sapio, Jose Cruz-Albrecht, John Richard Haley, Thomas M. Trostel
  • Publication number: 20190230107
    Abstract: Described is a low power system for mobile devices that provides continuous, behavior-based security validation of mobile device applications using neuromorphic hardware. A mobile device comprises a neuromorphic hardware component that runs on the mobile device for continuously monitoring time series related to individual mobile device application behaviors, detecting and classifying pattern anomalies associated with a known malware threat in the time series related to individual mobile device application behaviors, and generating an alert related to the known malware threat. The mobile device identifies pattern anomalies in dependency relationships of mobile device inter-application and intra-applications communications, detects pattern anomalies associated with new malware threats, and isolates a mobile device application having a risk of malware above a predetermined threshold relative to a risk management policy.
    Type: Application
    Filed: November 23, 2018
    Publication date: July 25, 2019
    Inventors: Vincent De Sapio, Hyun (Tiffany) J. Kim, Kyungnam Kim, Nigel D. Stepp, Kang-Yu Ni, Jose Cruz-Albrecht, Braden Mailloux
  • Publication number: 20190100335
    Abstract: A method and apparatus for maintaining a vehicle, such as an aircraft. A plurality of maintenance messages generated during operation of the vehicle are stored to form a plurality of stored maintenance messages. The stored maintenance messages are filtered to remove from the stored maintenance messages those maintenance messages that are correlated to minimum equipment list actions to form filtered stored maintenance messages. A predicted maintenance message is generated from the filtered stored maintenance messages by applying a machine learning algorithm to the filtered stored maintenance messages. The predicted maintenance message may be used to perform a maintenance operation on the vehicle.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: David J. Huber, Nigel D. Stepp, Tsai-Ching Lu
  • Publication number: 20170316311
    Abstract: Described is a sparse inference module that can be incorporated into a deep learning system. For example, the deep learning system includes a plurality of hierarchical feature channel layers, each feature channel layer having a set of filters. A plurality of sparse inference modules can be included such that a sparse inference module resides electronically within each feature channel layer. Each sparse inference module is configured to receive data and match the data against a plurality of pattern templates to generate a degree of match value for each of the pattern templates, with the degree of match values being sparsified such that only those degree of match values that exceed a predetermined threshold, or a fixed number of the top degree of match values, are provided to subsequent feature channels in the plurality of hierarchical feature channels, while other, losing degree of match values are quenched to zero.
    Type: Application
    Filed: March 24, 2016
    Publication date: November 2, 2017
    Inventors: Praveen K. Pilly, Nigel D. Stepp, Narayan Srinivasa