Patents by Inventor Nigel Gough

Nigel Gough has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9125569
    Abstract: An ABPI measurement system includes a cuff for each ankle and a cuff for each arm of a patient. Each cuff has first and second chambers. The four cuffs are applied to each limb (or finger or toe), each chamber is inflated simultaneously to a pressure until a Pneumo Arterial Plethysmography (PAPG) signal related to the arterial flow in the limb is detected at the chambers. The second chambers are then simultaneously inflated until the PAPG signals are extinguished in each limb, the inflation of the second chambers continuing for 10 mmHg to 20 mmHg above the extinguishing pressure. The second chambers are then deflated and the pressure in the second chamber at which the PAPG signal returns in the first chamber is recorded for each limb and this value of the pressure is used to calculate the ABPI. The ABPI is displayed or sent to a remote site.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: September 8, 2015
    Assignee: Huntleigh Technology Limited
    Inventors: Nigel Gough, Jon Evans
  • Patent number: 8764690
    Abstract: The apparatus comprises an inflatable sleeve 6 to be wrapped around a limb, typically a thigh, of a patient. The sleeve 6 comprises three inflatable chambers 3, 4, 5. Inflation is controlled by a pump 1 so that the distal chamber 3 is inflated first to a low pressure to act as a tourniquet, followed by inflation of the central chamber 4 to a pressure to drive fluid flow upwards, and then inflation of the proximal chamber 5 to a low pressure to act as a tourniquet and deflating both the distal 3 and central 4 chambers to produce a negative pressure gradient down-stream in the limb causing fluid to be drawn up the limb. This cycle is repeated a number of times over a period of two minutes before allowing the limb to rest for two minutes, resulting in increased mean arterial blood flow.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: July 1, 2014
    Assignee: Huntleigh Technology Limited
    Inventor: Nigel Gough
  • Publication number: 20130245468
    Abstract: An ABPI measurement system includes a cuff for each ankle and a cuff for each arm of a patient. Each cuff has first and second chambers. The four cuffs are applied to each limb (or finger or toe), each chamber is inflated simultaneously to a pressure until a Pneumo Arterial Plethysmography (PAPG) signal related to the arterial flow in the limb is detected at the chambers. The second chambers are then simultaneously inflated until the PAPG signals are extinguished in each limb, the inflation of the second chambers continuing for 10 mmHg to 20 mmHg above the extinguishing pressure. The second chambers are then deflated and the pressure in the second chamber at which the PAPG signal returns in the first chamber is recorded for each limb and this value of the pressure is used to calculate the ABPI. The ABPI is displayed or sent to a remote site.
    Type: Application
    Filed: May 8, 2013
    Publication date: September 19, 2013
    Applicant: Huntleigh Technology Limited
    Inventors: Nigel Gough, Jon Evans
  • Patent number: 8439843
    Abstract: An ABPI measurement system includes two cuffs for each ankle and two cuffs for each arm of a patient. Each cuff has chambers. The four cuffs are applied to each limb (or finger or toe), each chamber is inflated simultaneously to a pressure until a Pneumo Arterial Plethysmography (PAPG) signal related to the arterial flow in the limb is detected at the chambers. The chambers are then simultaneously inflated until the PAPG signals are extinguished in each limb, the inflation of chambers continuing for 10 mmHg to 20 mmHg above that pressure. The chambers are then deflated and the pressure at which the PAPG signal returns in the first chamber is recorded for each limb and this value of the pressure is used to calculate the ABPI. The ABPI is displayed or sent to a remote site.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: May 14, 2013
    Assignee: Huntleigh Technology Limited
    Inventors: Nigel Gough, Jon Evans
  • Publication number: 20120065523
    Abstract: A device comprising a light transmission and detection system having transducers (10, 20, 7, 8), control means (5) and output means (7). The transducers are placed at various sites on the body of a patient and the light absorbed and/or reflected at these sites is measured and signals related to vasomotor activity are collected. The output can take the form of a detailed display of the vasomotor signals collected from the transducers (10, 20, 7, 8) to a simple indication of a condition present or absent. For example, the presence of a unilateral DVT can be detected by measuring the dissimilarity between two transducer signals from the soles of a patient's feet. The invention can also be used to provide an indication or not of for example, DVT and diabetic peripheral neuropathy.
    Type: Application
    Filed: December 20, 2010
    Publication date: March 15, 2012
    Inventor: Nigel Gough
  • Publication number: 20100036299
    Abstract: The apparatus comprises an inflatable sleeve 6 to be wrapped around a limb, typically a thigh, of a patient. The sleeve 6 comprises three inflatable chambers 3, 4, 5. Inflation is controlled by a pump 1 so that the distal chamber 3 is inflated first to a low pressure to act as a tourniquet, followed by inflation of the central chamber 4 to a pressure to drive fluid flow upwards, and then inflation of the proximal chamber 5 to a low pressure to act as a tourniquet and deflating both the distal 3 and central 4 chambers to produce a negative pressure gradient down-stream in the limb causing fluid to be drawn up the limb. This cycle is repeated a number of times over a period of two minutes before allowing the limb to rest for two minutes, resulting in increased mean arterial blood flow.
    Type: Application
    Filed: November 6, 2007
    Publication date: February 11, 2010
    Inventor: Nigel Gough
  • Publication number: 20090036786
    Abstract: An ABPI measurement system includes two cuffs for each ankle and two cuffs for each arm of a patient. Each cuff has chambers. The four cuffs are applied to each limb (or finger or toe), each chamber is inflated simultaneously to a pressure until a Pneumo Arterial Plethysmography (PAPG) signal related to the arterial flow in the limb is detected at the chambers. The chambers are then simultaneously inflated until the PAPG signals are extinguished in each limb, the inflation of chambers continuing for 10 mmHg to 20 mmHg above that pressure. The chambers are then deflated and the pressure at which the PAPG signal returns in the first chamber is recorded for each limb and this value of the pressure is used to calculate the ABPI. The ABPI is displayed or sent to a remote site.
    Type: Application
    Filed: February 23, 2007
    Publication date: February 5, 2009
    Inventors: Nigel Gough, Jon Evans
  • Publication number: 20080076984
    Abstract: A device comprising a light transmission and detection system having transducers (10, 20, 7, 8), control means (5) and output means (7). The transducers are placed at various sites on the body of a patient and the light absorbed and/or reflected at these sites is measured and signals related to vasomotor activity are collected. The output can take the form of a detailed display of the vasomotor signals collected from the transducers (10, 20, 7, 8) to a simple indication of a condition present or absent. For example, the presence of a unilateral DVT can be detected by measuring the dissimilarity between two transducer signals from the soles of a patient's feet. The invention can also be used to provide an indication or not of for example, DVT and diabetic peripheral neuropathy.
    Type: Application
    Filed: October 19, 2005
    Publication date: March 27, 2008
    Inventor: Nigel GOUGH
  • Publication number: 20060234383
    Abstract: The tissue assessment device consists of a fluid pressure system (1, 2, 11); an optical system (3, 5, 6); and a micro-controller (13). Compression of bladder (11) by actuator (12) displaces the fluid within the bladder 11 into chamber (2) causing diaphragm (1) to inflate and apply pressure onto the tissue surface in order to initiate a blanch. The diaphragm (1) is deflated after a predetermined time, either by releasing the actuator (12) or opening exhaust valve (8). Throughout the blanching, the optical system (3, 5, 6) illuminates the blanch area and the returned light data is collected at regular intervals for several wavelengths from the point when the blanch is initiated, throughout the blanching and a predetermined time thereafter during the recovery phase. The micro-controller controls the process and analyses the returned signals to provide assessment of the tissue surface area. The invention provides a simple low skill tissue assessment device that is highly reliable.
    Type: Application
    Filed: February 19, 2004
    Publication date: October 19, 2006
    Inventor: Nigel Gough