Patents by Inventor Nigel J. Mouncey

Nigel J. Mouncey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9115378
    Abstract: The present invention relates to newly identified microorganisms capable of direct production of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also relates to polynucleotide sequences comprising genes that encode proteins which are involved in the synthesis of Vitamin C. The invention also features polynucleotides comprising the full length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: August 25, 2015
    Assignee: DSM IP ASSETS B.V.
    Inventors: Marie-Gabrielle Beuzelin-Ollivier, Bastien Chevreux, Manuela Dalluege, Marina Van Gelder, Markus G. Goese, Corina Hauk, Bertus P. Koekman, Connie Lee, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Dick Schipper, Masako Shinjoh, Christine Toepfer, Adrianus W. H. Vollebregt
  • Patent number: 9090920
    Abstract: Microorganism selected from Gluconobacter, Gluconacetobacter, Acetobacter or Ketogulonicigenium, wherein a gene encoding a polypeptide with the activity of a repressor of L-sorbosone dehydrogenase (SNDH) and L-sorbose dehydrogenase (SDH) is disrupted. The gene has a polynucleotide selected from polynucleotides encoding a polypeptide comprising the amino acid sequence of which is represented by SEQ ID NO:2, polynucleotide comprising the nucleotide sequence according to SEQ ID NO:1, polynucleotides the complementary strand of which hybridizes under stringent conditions to a polynucleotide as defined above and which encodes a polypeptide with the activity of a repressor of SNDH and SDH. The microorganism produces at least 10% more Vitamin C and/or 2-KGA from L-sorbose compared to a microorganism wherein the repressor is intact.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: July 28, 2015
    Assignee: DSM IP ASSETS B.V.
    Inventors: Bastien Chevreux, Nigel J. Mouncey, Masako Shinjoh
  • Patent number: 9079951
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of the polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of the polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in the microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: July 14, 2015
    Assignee: DSM IP ASSETS B.V.
    Inventors: Bastien Chevreux, Corina Hauk, Andrea Muffler, Nigel J. Mouncey, Masako Shinjoh
  • Patent number: 8318462
    Abstract: The present invention relates to newly identified microorganisms capable of direct production of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also relates to polynucleotide sequences comprising genes that encode proteins which are involved in the synthesis of Vitamin C. The invention also features polynucleotides comprising the full length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: November 27, 2012
    Assignee: DSM IP Assets B.V.
    Inventors: Marie-Gabrielle Beuzelin-Ollivier, Bastian Chevreux, Manuela Dalluege, Marina Van Gelder, Markus G. Goese, Corina Hauk, Bertus P. Koekman, Connie Lee, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Dick Schipper, Masako Shinjoh, Christine Toepfer, Adrianus W. H. Vollebregt
  • Patent number: 8053218
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of the polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of the polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in the microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: November 8, 2011
    Assignee: DSM IP Assets B.V.
    Inventors: Bastian Chevreux, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Masako Shinjoh
  • Publication number: 20100248315
    Abstract: The present invention relates to newly identified microorganisms capable of direct production of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also relates to polynucleotide sequences comprising genes that encode proteins which are involved in the synthesis of Vitamin C. The invention also features polynucleotides comprising the full length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism.
    Type: Application
    Filed: August 1, 2007
    Publication date: September 30, 2010
    Inventors: Marie-Gabrielle Beuzelin-Ollivier, Bastian Chevreux, Manuela Dalluegge, Marina Van Gelder, Markus G. Goese, Corina Hauk, Bertus P. Koekman, Connie Lee, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Dick Schipper, Masako Shinjoh, Christine Toepfer, Adrianus W.H. Vollebregt
  • Publication number: 20090215135
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Application
    Filed: February 10, 2006
    Publication date: August 27, 2009
    Applicant: DSM IP ASSETS B.V.
    Inventors: Marie-Gabrielle Beuzelin-Ollivier, Bastian Chevreux, Manuela Dalluege, Markus G. Goese, Connie Lee, Anja Meury, Nigel J. Mouncey, Masako Shinjoh
  • Publication number: 20090148909
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Application
    Filed: September 7, 2006
    Publication date: June 11, 2009
    Applicant: DSM IP ASSETS B.V.
    Inventors: Bastien Chevreux, Nigel J. Mouncey, Masako Shinjoh
  • Publication number: 20090023191
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Application
    Filed: February 10, 2006
    Publication date: January 22, 2009
    Inventors: Bastien Chevreux, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Masako Shinjoh
  • Publication number: 20080305532
    Abstract: The present invention relates to a newly identified gene that encodes a protein that is involved in the synthesis of L-ascorbic acid (hereinafter also referred to a Vitamin C). The protein is coenzyme PQQ synthesis protein B. The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Application
    Filed: February 10, 2006
    Publication date: December 11, 2008
    Inventors: Bastien Chevreux, Anne F. Mayer, Nigel J. Mouncey, Masako Shinjoh
  • Publication number: 20080274520
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Application
    Filed: September 7, 2006
    Publication date: November 6, 2008
    Inventors: Bastien Chevreux, Corina Hauk, Andrea Muffler, Nigel J. Mouncey, Masako Shinjoh
  • Publication number: 20080213852
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Application
    Filed: February 10, 2006
    Publication date: September 4, 2008
    Inventors: Bastian Chevreux, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Masako Shinjoh
  • Publication number: 20080193972
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Application
    Filed: February 10, 2006
    Publication date: August 14, 2008
    Inventors: Bastian Chevreux, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Masako Shinjoh
  • Publication number: 20080176297
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Application
    Filed: February 10, 2006
    Publication date: July 24, 2008
    Inventors: Bastien Chevreux, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Masako Shinjoh
  • Publication number: 20080160589
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Application
    Filed: February 10, 2006
    Publication date: July 3, 2008
    Inventors: Bastien Chevreux, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Masako Shinjoh
  • Publication number: 20080160588
    Abstract: The present invention relates to newly identified genes that encode proteins that are involved in the synthesis of L-ascorbic acid (hereinafter also referred to as Vitamin C). The invention also features polynucleotides comprising the full-length polynucleotide sequences of the novel genes and fragments thereof, the novel polypeptides encoded by the polynucleotides and fragments thereof, as well as their functional equivalents. The present invention also relates to the use of said polynucleotides and polypeptides as biotechnological tools in the production of Vitamin C from microorganisms, whereby a modification of said polynucleotides and/or encoded polypeptides has a direct or indirect impact on yield, production, and/or efficiency of production of the fermentation product in said microorganism. Also included are methods/processes of using the polynucleotides and modified polynucleotide sequences to transform host microorganisms.
    Type: Application
    Filed: February 10, 2006
    Publication date: July 3, 2008
    Inventors: Bastian Chevreux, Anne F. Mayer, Anja Meury, Nigel J. Mouncey, Masako Shinjoh