Patents by Inventor Nigel Jed Wesley Morris

Nigel Jed Wesley Morris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914929
    Abstract: Techniques and systems for computer aided design of physical structures using an object splitting design process that optimize manufacturing efficiency are described. A described technique includes splitting, by a computer program, a three dimensional model of an initial object into an up skin region and a down skin region based on an analysis of draft angles along at least one surface of the three dimensional model of the initial object. The technique further includes producing, by the computer program, first and second three dimensional models of respective first and second objects in accordance with the up skin region and the down skin region to create separate first and second physical structures using one or more computer-controlled manufacturing systems such that the first and second physical structures are combinable to form a combined physical structure.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: February 27, 2024
    Assignee: Autodesk, Inc.
    Inventors: Brandon Stewart Cramer, Michael Grau, Nigel Jed Wesley Morris
  • Publication number: 20240028783
    Abstract: A generative design system includes a solver and a modeling tool comprising a visual programming interface and a design workflow script. The visual programming interface enables the user to specify a design problem including design constraints comprising parameters associated with standard building components, such as beams and joints. After the design problem is specified by the user, the modeling tool executes the design workflow script to automatically perform a design workflow that generates a design solution for the design problem. The design workflow script controls the operations of the modeling tool and the solver to interact in a collaborative manner to execute the design workflow comprising an ordered sequence of operations. The design solution comprises a 3D model of a modular beam structure that can be easily fabricated using standard building components, such as standardized beams and joints.
    Type: Application
    Filed: August 24, 2022
    Publication date: January 25, 2024
    Inventors: Rui WANG, David BENJAMIN, Pradeep Kumar JAYARAMAN, Nigel Jed Wesley MORRIS
  • Publication number: 20230324882
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using generative design processes. A method includes obtaining one or more load cases and one or more design criteria for a modeled object; iteratively modifying a three dimensional shape of the modeled object in accordance with the one or more design criteria and the one or more load cases, the iteratively modifying comprising regulating shape change velocities for an implicit surface representation of the three dimensional shape that exceed a reference velocity, where the reference velocity is set based on a mean and a standard deviation of a shape derivative on the implicit surface; and providing the three dimensional shape of the modeled object for use in manufacturing a physical structure corresponding to the modeled object using one or more computer-controlled manufacturing systems.
    Type: Application
    Filed: April 28, 2023
    Publication date: October 12, 2023
    Inventors: Konara Mudiyanselage Kosala Bandara, Anthony Christopher Kipkirui Yegon Ruto, Nigel Jed Wesley Morris, Andrew Gareth Lewis Jones
  • Patent number: 11675333
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using generative design processes. A method includes obtaining a design space for a modeled object, one or more design criteria for the modeled object, and one or more in-use load cases; iteratively modifying a generatively designed three dimensional shape of the modeled object in the design space in accordance with the one or more design criteria and the one or more in-use load cases for the physical structure, comprising: performing numerical simulation of the modeled object in accordance the one or more in-use load cases, computing shape change velocities for an implicit surface in a level-set representation of the three dimensional shape, changing the shape change velocities in accordance with a polynomial function, and updating the level-set representation using the shape change velocities to produce an updated version of the three dimensional shape.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: June 13, 2023
    Assignee: Autodesk, Inc.
    Inventors: Konara Mudiyanselage Kosala Bandara, Anthony Christopher Kipkirui Yegon Ruto, Nigel Jed Wesley Morris, Andrew Gareth Lewis Jones
  • Publication number: 20230177224
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design with feature thickness control, include: a three-dimensional modeling program configured to provide voxelized thinning based distance to medial surface processing that measures thicknesses in a three-dimensional model, and/or ramped scaling based thickness constraint application during shape and/or topology generation. The three-dimensional modeling program can be an architecture, engineering and/or construction program (e.g., building information management program), a product design and/or manufacturing program (e.g., a CAM program), and/or a media and/or entertainment production program (e.g., an animation production program).
    Type: Application
    Filed: March 29, 2022
    Publication date: June 8, 2023
    Inventors: Benjamin McKittrick Weiss, Nigel Jed Wesley Morris, Adrian Adam Thomas Butscher, Jesus Rodriguez
  • Publication number: 20230152778
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using techniques that facilitate manufacturing, include: modifying a three dimensional shape, for which a corresponding physical structure is to be created using a manufacturing process, to produce a modified three dimensional shape; and providing the modified shape of the modeled object for use in manufacturing the physical structure using one or more computer-controlled manufacturing systems that employ the manufacturing process.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 18, 2023
    Inventors: Benjamin McKittrick Weiss, Jesus Rodriguez, Ebot Etchu Ndip-Agbor, Nigel Jed Wesley Morris, Adrian Adam Thomas Butscher
  • Publication number: 20230056614
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using data format conversion (e.g., of output(s) from generative design processes) and user interface techniques that facilitate the production of 3D models of physical structures that are readily usable with 2.5-axis subtractive manufacturing, include: modifying smooth curves, which have been fit to contours representing discrete height layers of an object, to facilitate the 2.5-axis subtractive manufacturing; preparing an editable model of the object using a parametric feature history, which includes a sketch feature, to combine extruded versions of the smooth curves to form a 3D model of the object in a boundary representation format; reshaping a subset of the smooth curves responsive to user input with respect to the sketch feature; and replaying the parametric feature history to reconstruct the 3D model of the object, as changed by the user input.
    Type: Application
    Filed: September 14, 2022
    Publication date: February 23, 2023
    Inventors: Karl Darcy Daniel Willis, Nigel Jed Wesley Morris, Andreas Linas Bastian, Adrian Adam Thomas Butscher, Daniele Grandi, Suguru Furuta, Joseph George Lambourne, Tristan Ward Barback, Martin Cvetanov Marinov, Marco Amagliani, Jingyang John Chen, Michael Andrew Smell, Brian M. Frank, Hooman Shayani, Christopher Michael Wade, Nandakumar Santhanam
  • Publication number: 20220318636
    Abstract: In various embodiments, a training application trains machine learning models to perform tasks associated with 3D CAD objects that are represented using B-reps. In operation, the training application computes a preliminary result via a machine learning model based on a representation of a 3D CAD object that includes a graph and multiple 2D UV-grids. Based on the preliminary result, the training application performs one or more operations to determine that the machine learning model has not been trained to perform a first task. The training application updates at least one parameter of a graph neural network included in the machine learning model based on the preliminary result to generate a modified machine learning model. The training application performs one or more operations to determine that the modified machine learning model has been trained to perform the first task.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 6, 2022
    Inventors: Pradeep Kumar JAYARAMAN, Thomas Ryan DAVIES, Joseph George LAMBOURNE, Nigel Jed Wesley MORRIS, Aditya SANGHI, Hooman SHAYANI
  • Publication number: 20220318637
    Abstract: In various embodiments, an inference application performs tasks associated with 3D CAD objects that are represented using B-reps. A UV-net representation of a 3D CAD object that is represented using a B-rep includes a set of 2D UV-grids and a graph. In operation, the inference application maps the set of 2D UV-grids to a set of node feature vectors via a trained neural network. Based on the node feature vectors and the graph, the inference application computes a final result via a trained graph neural network. Advantageously, the UV-net representation of the 3D CAD object enabled the trained neural network and the trained graph neural network to efficiently process the 3D CAD object.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 6, 2022
    Inventors: Pradeep Kumar JAYARAMAN, Thomas Ryan DAVIES, Joseph George LAMBOURNE, Nigel Jed Wesley MORRIS, Aditya SANGHI, Hooman SHAYANI
  • Publication number: 20220318466
    Abstract: In various embodiments, a parameter domain graph application generates UV-net representations of 3D CAD objects for machine learning models. In operation, the parameter domain graph application generates a graph based on a B-rep of a 3D CAD object. The parameter domain graph application discretizes a parameter domain of a parametric surface associated with the B-rep into a 2D grid. The parameter domain graph application computes at least one feature at a grid point included in the 2D grid based on the parametric surface to generate a 2D UV-grid. Based on the graph and the 2D UV-grid, the parameter domain graph application generates a UV-net representation of the 3D CAD object. Advantageously, generating UV-net representations of 3D CAD objects that are represented using B-reps enables the 3D CAD objects to be processed efficiently using neural networks.
    Type: Application
    Filed: June 15, 2021
    Publication date: October 6, 2022
    Inventors: Pradeep Kumar JAYARAMAN, Thomas Ryan DAVIES, Joseph George LAMBOURNE, Nigel Jed Wesley MORRIS, Aditya SANGHI, Hooman SHAYANI
  • Patent number: 11455435
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using data format conversion (e.g., of output(s) from generative design processes) and user interface techniques that facilitate the production of 3D models of physical structures that are readily usable with 2.5-axis subtractive manufacturing, include: modifying smooth curves, which have been fit to contours representing discrete height layers of an object, to facilitate the 2.5-axis subtractive manufacturing; preparing an editable model of the object using a parametric feature history, which includes a sketch feature, to combine extruded versions of the smooth curves to form a 3D model of the object in a boundary representation format; reshaping a subset of the smooth curves responsive to user input with respect to the sketch feature; and replaying the parametric feature history to reconstruct the 3D model of the object, as changed by the user input.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: September 27, 2022
    Assignee: Autodesk, Inc.
    Inventors: Karl Darcy Daniel Willis, Nigel Jed Wesley Morris, Andreas Linas Bastian, Adrian Adam Thomas Butscher, Daniele Grandi, Suguru Furuta, Joseph George Lambourne, Tristan Ward Barback, Martin Cvetanov Marinov, Marco Amagliani, Jingyang John Chen, Michael Andrew Smell, Brian M. Frank, Hooman Shayani, Christopher Michael Wade, Nandakumar Santhanam
  • Publication number: 20220222389
    Abstract: Techniques and systems for computer aided design of physical structures using an object splitting design process that optimize manufacturing efficiency are described. A described techniques includes obtaining an input model of an initial object to be manufactured, the input model providing a 3D topology and shape for the object; determining, based on the 3D topology and shape, a 3D parting surface to split the initial object into separate objects, the parting surface intersects an inflection zone that is situated between up and down skin regions of the 3D topology and shape; and providing first and second 3D models of the separate objects in accordance with the 3D topology and shape and the parting surface, for use in manufacturing separate physical structures corresponding to the separate objects using one or more computer-controlled manufacturing systems, where after respective manufacturing, the physical structures are configured to be assembled to form a combined structure.
    Type: Application
    Filed: March 31, 2022
    Publication date: July 14, 2022
    Inventors: Brandon Stewart Cramer, Michael Grau, Nigel Jed Wesley Morris
  • Patent number: 11295041
    Abstract: Techniques and systems for computer aided design of physical structures using an object splitting design process that optimize manufacturing efficiency are described. A described techniques includes obtaining an input model of an initial object to be manufactured, the input model providing a 3D topology and shape for the object; determining, based on the 3D topology and shape, a 3D parting surface to split the initial object into separate objects, the parting surface intersects an inflection zone that is situated between up and down skin regions of the 3D topology and shape; and providing first and second 3D models of the separate objects in accordance with the 3D topology and shape and the parting surface, for use in manufacturing separate physical structures corresponding to the separate objects using one or more computer-controlled manufacturing systems, where after respective manufacturing, the physical structures are configured to be assembled to form a combined structure.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: April 5, 2022
    Assignee: Autodesk, Inc.
    Inventors: Brandon Stewart Cramer, Michael Grau, Nigel Jed Wesley Morris
  • Publication number: 20220091580
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using generative design processes. A method includes obtaining a design space for a modeled object, one or more design criteria for the modeled object, and one or more in-use load cases; iteratively modifying a generatively designed three dimensional shape of the modeled object in the design space in accordance with the one or more design criteria and the one or more in-use load cases for the physical structure, comprising: performing numerical simulation of the modeled object in accordance the one or more in-use load cases, computing shape change velocities for an implicit surface in a level-set representation of the three dimensional shape, changing the shape change velocities in accordance with a polynomial function, and updating the level-set representation using the shape change velocities to produce an updated version of the three dimensional shape.
    Type: Application
    Filed: June 11, 2021
    Publication date: March 24, 2022
    Inventors: Konara Mudiyanselage Kosala Bandara, Anthony Christopher Kipkirui Yegon Ruto, Nigel Jed Wesley Morris, Andrew Gareth Lewis Jones
  • Publication number: 20210406412
    Abstract: Techniques and systems for computer aided design of physical structures using an object splitting design process that optimize manufacturing efficiency are described. A described techniques includes obtaining an input model of an initial object to be manufactured, the input model providing a 3D topology and shape for the object; determining, based on the 3D topology and shape, a 3D parting surface to split the initial object into separate objects, the parting surface intersects an inflection zone that is situated between up and down skin regions of the 3D topology and shape; and providing first and second 3D models of the separate objects in accordance with the 3D topology and shape and the parting surface, for use in manufacturing separate physical structures corresponding to the separate objects using one or more computer-controlled manufacturing systems, where after respective manufacturing, the physical structures are configured to be assembled to form a combined structure.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Brandon Stewart Cramer, Michael Grau, Nigel Jed Wesley Morris
  • Patent number: 10654220
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, facilitate creation and use of 3D models of objects with different material properties. In one aspect, a method includes specifying a continuous data format representation for a first property of an object and a discretized data format representation for a second property of the object, wherein the first property and the second property are different from each other; producing a 3D model of the object within a 3D space using the continuous and discretized data format representations, which overlap with each other in all three dimensions in at least a portion of the 3D space; and using at least one common access method into the 3D model of the object to obtain data from both the continuous and discretized data format representations, within the portion of the 3D space, to manufacture the object using one or more manufacturing processes.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: May 19, 2020
    Assignee: Autodesk, Inc.
    Inventors: Francesco Iorio, Nigel Jed Wesley Morris, Adrian Adam Thomas Butscher, Massimiliano Moruzzi
  • Publication number: 20200151286
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using data format conversion (e.g., of output(s) from generative design processes) and user interface techniques that facilitate the production of 3D models of physical structures that are readily usable with 2.5-axis subtractive manufacturing, include: modifying smooth curves, which have been fit to contours representing discrete height layers of an object, to facilitate the 2.5-axis subtractive manufacturing; preparing an editable model of the object using a parametric feature history, which includes a sketch feature, to combine extruded versions of the smooth curves to form a 3D model of the object in a boundary representation format; reshaping a subset of the smooth curves responsive to user input with respect to the sketch feature; and replaying the parametric feature history to reconstruct the 3D model of the object, as changed by the user input.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 14, 2020
    Inventors: Karl Darcy Daniel Willis, Nigel Jed Wesley Morris, Andreas Linas Bastian, Adrian Adam Thomas Butscher, Daniele Grandi, Suguru Furuta, Joseph George Lambourne, Tristan Ward Barback, Martin Cvetanov Marinov, Marco Amagliani, Jingyang John Chen, Michael Andrew Smell, Brian M. Frank, Hooman Shayani, Christopher Michael Wade, Nandakumar Santhanam
  • Publication number: 20190270252
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, facilitate creation and use of 3D models of objects with different material properties. In one aspect, a method includes specifying a continuous data format representation for a first property of an object and a discretized data format representation for a second property of the object, wherein the first property and the second property are different from each other; producing a 3D model of the object within a 3D space using the continuous and discretized data format representations, which overlap with each other in all three dimensions in at least a portion of the 3D space; and using at least one common access method into the 3D model of the object to obtain data from both the continuous and discretized data format representations, within the portion of the 3D space, to manufacture the object using one or more manufacturing processes.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 5, 2019
    Inventors: Francesco Iorio, Nigel Jed Wesley Morris, Adrian Adam Thomas Butscher, Massimiliano Moruzzi
  • Patent number: 10307963
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, facilitate creation and use of multi-material three dimensional models. In one aspect, a system includes one or more computer storage media having instructions stored thereon; and one or more data processing apparatus configured to execute the instructions to perform operations including (i) receiving input specifying different material properties of an object to be manufactured, (ii) generating from the input a three dimensional (3D) model of the object using overlapping volume representations of the different material properties of the object, wherein the overlapping volume representations employ different data formats and different resolutions, and (iii) storing the 3D model of the object for use in manufacturing the object.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: June 4, 2019
    Assignee: Autodesk, Inc.
    Inventors: Francesco Iorio, Nigel Jed Wesley Morris, Adrian Adam Thomas Butscher, Massimiliano Moruzzi
  • Publication number: 20190030816
    Abstract: Methods, systems, and apparatus, including medium-encoded computer program products, facilitate creation and use of multi-material three dimensional models. In one aspect, a system includes one or more computer storage media having instructions stored thereon; and one or more data processing apparatus configured to execute the instructions to perform operations including (i) receiving input specifying different material properties of an object to be manufactured, (ii) generating from the input a three dimensional (3D) model of the object using overlapping volume representations of the different material properties of the object, wherein the overlapping volume representations employ different data formats and different resolutions, and (iii) storing the 3D model of the object for use in manufacturing the object.
    Type: Application
    Filed: August 28, 2018
    Publication date: January 31, 2019
    Inventors: Francesco Iorio, Nigel Jed Wesley Morris, Adrian Adam Thomas Butscher, Massimiliano Moruzzi