Patents by Inventor Nigel Pickett

Nigel Pickett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10227529
    Abstract: A method of producing nanoparticles comprises effecting conversion of a nanoparticle precursor composition to the material of the nanoparticles. The nanoparticle precursor composition comprises a first precursor species containing a group 13 element to be incorporated into the nanoparticles and a separate second precursor species containing either a group 15 or a group 16 element to be incorporated into the nanoparticles. The conversion is effected in the presence of molecular cluster compounds under conditions permitting seeding and growth of the nanoparticles on the molecular cluster compounds. The molecular cluster compounds and nanoparticle precursor composition can be dissolved in a solvent at a first temperature to form a solution and the temperature of the solution can then be increased to a second temperature sufficient to initiate seeding and growth of the nanoparticles on the molecular cluster compounds.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: March 12, 2019
    Assignee: Nanoco Technologies Ltd.
    Inventors: Paul O'Brien, Nigel Pickett
  • Patent number: 10217908
    Abstract: A light emitting layer including a plurality of light emitting particles embedded within a host matrix material. Each of said light emitting particles includes a population of semiconductor nanoparticles embedded within a polymeric encapsulation medium. A method of fabricating a light emitting layer comprising a plurality of light emitting particles embedded within a host matrix material, each of said light emitting particles comprising a population of semiconductor nanoparticles embedded within a polymeric encapsulation medium. The method comprises providing a dispersion containing said light emitting particles, depositing said dispersion to form a film, and processing said film to produce said light emitting layer.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: February 26, 2019
    Assignee: Nanoco Technologies Ltd.
    Inventors: Imad Naasani, James Harris, Nigel Pickett
  • Publication number: 20190019906
    Abstract: Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
    Type: Application
    Filed: September 12, 2018
    Publication date: January 17, 2019
    Inventors: Nathalie Gresty, James Harris, Ombretta Masala, Nigel Pickett, Laura Wylde, Christopher Newman
  • Patent number: 10177262
    Abstract: Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: January 8, 2019
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nathalie Gresty, James Harris, Ombretta Masala, Nigel Pickett, Laura Wylde, Christopher Newman
  • Patent number: 10177263
    Abstract: Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 8, 2019
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nathalie Gresty, James Harris, Ombretta Masala, Nigel Pickett, Laura Wylde, Christopher Newman
  • Patent number: 10059585
    Abstract: A method of synthesis of two-dimensional (2D) nanoflakes comprises the cutting of prefabricated nanoparticles. The method allows high control over the shape, size and composition of the 2D nanoflakes, and can be used to produce material with uniform properties in large quantities. Van der Waals heterostructure devices are prepared by fabricating nanoparticles, chemically cutting the nanoparticles to form nanoflakes, dispersing the nanoflakes in a solvent to form an ink, and depositing the ink to form a thin film.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: August 28, 2018
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nigel Pickett, Steven Daniels, Ombretta Masala
  • Patent number: 10062568
    Abstract: A method of synthesis of two-dimensional metal chalcogenide monolayers, such as WSe2 and MoSe2, is based on a chemical vapor deposition approach that uses H2Se or alkyl or aryl selenide precursors to form a reactive gas. The gaseous selenium precursor may be introduced into a tube furnace containing a metal precursor at a selected temperature, wherein the selenium and metal precursors react to form metal chalcogenide monolayers.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: August 28, 2018
    Assignee: Nanoco Technologies, Ltd.
    Inventors: Nigel Pickett, Ombretta Masala, Nicky Prabhudas Savjani
  • Patent number: 10032964
    Abstract: In various embodiments, the present invention relates to a plurality of coated primary particles, each primary particle including a primary matrix material and containing a population of semiconductor nanoparticles, wherein each primary particle is provided with a separate layer of a surface coating material. Various methods of preparing such particles are described. Composite materials and light-emitting devices incorporating such primary particles are also described.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: July 24, 2018
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nigel Pickett, Imad Naasani, James Harris
  • Patent number: 10014452
    Abstract: Embodiments of the present invention relate to a formulation for use in the fabrication of a light-emitting device, the formulation including a population of semiconductor nanoparticles incorporated into a plurality of discrete microbeads comprising an optically transparent medium, the nanoparticle-containing medium being embedded in a host light-emitting diode encapsulation medium. A method of preparing such a formulation is described. There is further provided a light-emitting device including a primary light source in optical communication with such a formulation and a method of fabricating the same.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: July 3, 2018
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nigel Pickett, James Harris
  • Patent number: 10014447
    Abstract: The present invention relates to a primary particle comprised of a primary matrix material containing a population of semiconductor nanoparticles, wherein each primary particle further comprises an additive to enhance the physical, chemical and/or photo-stability of the semiconductor nanoparticles. A method of preparing such particles is described. Composite materials and light emitting devices incorporating such primary particles are also described.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: July 3, 2018
    Assignee: Nanoco Technologies, Ltd.
    Inventors: Nigel Pickett, Imad Naasani, James Harris
  • Publication number: 20180072947
    Abstract: A method of synthesizing two-dimensional (2D) nanoparticles of transition metal dichalcogenide (TMDC) material utilises a molecular cluster compound. The method allows a high degree of control over the shape, size and composition of the 2D TMDC nanoparticles, and may be used to produce material with uniform properties in large quantities.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Nigel Pickett, Ombretta Masala
  • Publication number: 20180072857
    Abstract: A thin silazane coating cured with short-wavelength UV radiation is highly transparent, exhibits good oxygen-barrier properties, and does minimal damage to quantum dots in a quantum dot-containing film.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Nigel Pickett, Cong-Duan Vo
  • Publication number: 20180047878
    Abstract: Quantum dot semiconductor nanoparticle compositions that incorporate ions such as zinc, aluminum, calcium, or magnesium into the quantum dot core have been found to be more stable to Ostwald ripening. A core-shell quantum dot may have a core of a semiconductor material that includes indium, magnesium, and phosphorus ions. Ions such as zinc, calcium, and/or aluminum may be included in addition to, or in place of, magnesium. The core may further include other ions, such as selenium, and/or sulfur. The core may be coated with one (or more) shells of semiconductor material. Example shell semiconductor materials include semiconductors containing zinc, sulfur, selenium, iron and/or oxygen ions.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 15, 2018
    Inventors: Paul Anthony Glarvey, James Harris, Steven Daniels, Nigel Pickett, Arun Narayanaswamy
  • Publication number: 20180009676
    Abstract: A method of synthesis of two-dimensional (2D) nanoflakes comprises the cutting of prefabricated nanoparticles. The method allows high control over the shape, size and composition of the 2D nanoflakes, and can be used to produce material with uniform properties in large quantities. Van der Waals heterostructure devices are prepared by fabricating nanoparticles, chemically cutting the nanoparticles to form nanoflakes, dispersing the nanoflakes in a solvent to form an ink, and depositing the ink to form a thin film.
    Type: Application
    Filed: June 23, 2017
    Publication date: January 11, 2018
    Inventors: Nigel Pickett, Steven Daniels, Ombretta Masala
  • Publication number: 20170373230
    Abstract: The present invention relates to a primary particle comprised of a primary matrix material containing a population of semiconductor nanoparticles, wherein each primary particle further comprises an additive to enhance the physical, chemical and/or photo-stability of the semiconductor nanoparticles. A method of preparing such particles is described. Composite materials and light emitting devices incorporating such primary particles are also described.
    Type: Application
    Filed: January 6, 2017
    Publication date: December 28, 2017
    Inventors: Nigel Pickett, Imad Naasani, James Harris
  • Publication number: 20170373263
    Abstract: An organic light-emitting diode with an inorganic two-dimensional (2D) EL active material may comprise a plurality of layers on a plastic or glass substrate. In addition to the EL layer, the device may comprise a hole injection layer, a hole transport layer/electron blocking layer, an electron transport layer/hole blocking layer, an electron injection layer, and optional buffer layers such as poly(methyl methacrylate) (PMMA) to help balance the charge injection into the 2D material and redistribute the electric field.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 28, 2017
    Inventors: Stuart Stubbs, Stephen Whitelegg, Nigel Pickett, Zugang Liu
  • Patent number: 9853190
    Abstract: Quantum dot semiconductor nanoparticle compositions that incorporate ions such as zinc, aluminum, calcium, or magnesium into the quantum dot core have been found to be more stable to Ostwald ripening. A core-shell quantum dot may have a core of a semiconductor material that includes indium, magnesium, and phosphorus ions. Ions such as zinc, calcium, and/or aluminum may be included in addition to, or in place of, magnesium. The core may further include other ions, such as selenium, and/or sulfur. The core may be coated with one (or more) shells of semiconductor material. Example shell semiconductor materials include semiconductors containing zinc, sulfur, selenium, iron and/or oxygen ions.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 26, 2017
    Assignee: Nanoco Technologies Ltd.
    Inventors: Paul Anthony Glarvey, James Harris, Steven Daniels, Nigel Pickett, Arun Narayanaswamy
  • Publication number: 20170330748
    Abstract: A method of synthesis of two-dimensional metal chalcogenide monolayers, such as WSe2 and MoSe2, is based on a chemical vapor deposition approach that uses H2Se or alkyl or aryl selenide precursors to form a reactive gas. The gaseous selenium precursor may be introduced into a tube furnace containing a metal precursor at a selected temperature, wherein the selenium and metal precursors react to form metal chalcogenide monolayers.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 16, 2017
    Inventors: NIGEL PICKETT, OMBRETTA MASALA, NICKY PRABHUDAS SAVJANI
  • Patent number: 9755101
    Abstract: A method of preparing Group XIII selenide nanoparticles comprises reacting a Group XIII ion source with a selenol compound. The nanoparticles have an MxSey Semiconductor core (where M is In or Ga) and an organic capping ligand attached to the core via a carbon-selenium bond. The selenol provides a source of selenium for incorporation into the semiconductor core and also provides the organic capping ligand. The nanoparticles are particularly suitable for solution-based methods of preparing semiconductor films.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: September 5, 2017
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nathalie Gresty, Ombretta Masala, Christopher Newman, Stephen Whitelegg, Nigel Pickett
  • Publication number: 20170233690
    Abstract: Quantum dot (QD) LEDs useful for plant, algael and photosynthetic bacterial growth applications. The QD LEDs utilizes a solid state LED (typically emitting blue or UV light) as the primary light source and one or more QD elements as a secondary light source that down-converts the primary light. The emission profile of the QD LED can be tuned to correspond to the absorbance spectrum of one or more photosynthetic pigments of the organism.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 17, 2017
    Inventors: Nigel Pickett, Imad Naasani, James Harris, Nathalie Gresty