Patents by Inventor Nigel T. Hart
Nigel T. Hart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220019558Abstract: A computer-implemented method of creating a database of characterising codes, each characterising code being indicative of character of a respective example of a physical system. The method comprises the steps of performing for each example: (a) receiving data including respective values of a plurality of parameters associated with the system; (b) identifying, from a plurality of data clusters, a data cluster for each value, said data clusters each defining a range of possible values of the respective parameter; (c) assigning each parameter to its identified data cluster; (d) generating, from the assigned data clusters, a characterising code for that example including a unique label for each of the identified data clusters; and (e) storing the characterising code in a database of characterising codes.Type: ApplicationFiled: May 28, 2021Publication date: January 20, 2022Applicant: ROLLS-ROYCE plcInventors: Nigel T. HART, Raza SEKHA
-
Publication number: 20210397614Abstract: A computer-implemented method. The method comprising: (a) obtaining a plurality of unique identifiers, each unique identifier being associated with a respective characterising code, each characterising code being indicative of character of an example of a same physical system; (b) accessing a database of characterising codes, and retrieving each respective characterising code; (c) determining a degree of similarity between each retrieved characterising code; and (d) providing, as an output, the determined degrees of similarity.Type: ApplicationFiled: May 28, 2021Publication date: December 23, 2021Applicant: ROLLS-ROYCE plcInventors: Nigel T. HART, Raza SEKHA
-
Publication number: 20210396178Abstract: A computer-implemented method. The method comprising: (a) obtaining a candidate characterising code, the candidate characterising code being indicative of character of an example of a physical system; (b) accessing a database of extant characterising codes, the extant characterising codes being indicative of character of other examples of the physical system; (c) determining a degree of similarity between the candidate characterising code, and at least one of the extant characterising code; and (e) providing, as an output, the results of the comparison.Type: ApplicationFiled: May 28, 2021Publication date: December 23, 2021Applicant: ROLLS-ROYCE plcInventors: Nigel T. HART, Raza SEKHA
-
Patent number: 9350031Abstract: A fuel cell stack having a plurality of connected modules. Each module includes an elongate hollow member and at least one passage extending through the hollow member. Each hollow member has a first flat surface and a second flat surface arranged parallel to the first flat surface. A first module includes a plurality of fuel cells arranged on at least one of the first and second flat surfaces. A first end of each module has an integral spacer and the modules are connected by the spacer of a first module contacting a second end of a second module.Type: GrantFiled: October 23, 2013Date of Patent: May 24, 2016Assignee: LG FUEL CELL SYSTEMS INC.Inventors: Gary Wright, Nigel T. Hart, Gerard D. Agnew, Christopher Burrows
-
Publication number: 20140065506Abstract: A fuel cell stack (10) having a plurality of modules (12) and each module (12) having an elongate hollow member (14). Each hollow member (14) has a first flat surface (16) and a second flat surface (18) arranged parallel to the first flat surface (16). At least one of the modules (12) includes a plurality of fuel cells (20). The fuel cells (20) are arranged on at least one of the first and second flat surfaces (16,18) of the at least one module (12). A first end (30) and a first side (32) of each module (12) has a first integral feature (34) to provide a spacer and a connection with an adjacent module (12) and a second end (38) and a second side (40) of each module (12) has a second integral feature (42) to provide a spacer and a connection with another adjacent module (12).Type: ApplicationFiled: October 23, 2013Publication date: March 6, 2014Applicant: LG FUEL CELL SYSTEMS INC.Inventors: Gary Wright, Nigel T. Hart, Gerard D. Agnew, Christopher Burrows
-
Patent number: 8597852Abstract: A fuel cell stack having a plurality of connected modules. Each module includes an elongate hollow member and at least one passage extending through the hollow member. Each hollow member has a first flat surface and a second flat surface arranged parallel to the first flat surface. A first module includes a plurality of fuel cells arranged on at least one of the first and second flat surfaces. A first end of each module has an integral spacer.Type: GrantFiled: November 10, 2008Date of Patent: December 3, 2013Assignee: LG Fuel Cell Systems Inc.Inventors: Gary Wright, Nigel T Hart, Gerard D Agnew, Christopher Burrows
-
Patent number: 7892691Abstract: A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).Type: GrantFiled: January 27, 2010Date of Patent: February 22, 2011Assignee: Rolls-Royce plcInventors: Michael J. Day, Frederick J. Gardner, Mark Cassidy, Nigel Brandon, Nigel T. Hart
-
Patent number: 7732075Abstract: A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).Type: GrantFiled: March 17, 2009Date of Patent: June 8, 2010Assignee: Rolls-Royce plcInventors: Michael J. Day, Frederick J. Gardner, Mark Cassidy, Nigel Brandon, Nigel T. Hart
-
Publication number: 20100129727Abstract: A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).Type: ApplicationFiled: January 27, 2010Publication date: May 27, 2010Applicant: ROLLS-ROYCE PLCInventors: Michael J. Day, Frederick J. Gardner, Mark Cassidy, Nigel Brandon, Nigel T. Hart
-
Publication number: 20090194219Abstract: A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).Type: ApplicationFiled: March 17, 2009Publication date: August 6, 2009Inventors: MICHAEL J. DAY, FREDERICK J. GARDNER, MARK CASSIDY, NIGEL BRANDON, NIGEL T. HART
-
Patent number: 7531260Abstract: A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).Type: GrantFiled: April 3, 2003Date of Patent: May 12, 2009Assignee: Rolls-Royce plcInventors: Michael J. Day, Frederick J. Gardner, Mark Cassidy, Nigel Brandon, Nigel T. Hart
-
Publication number: 20090068538Abstract: A fuel cell stack (10) comprises a plurality of modules (12) and each module (12) comprises an elongate hollow member (14). Each module (12) has at least one passage (31) extending longitudinally through the hollow member (14) for the flow of a reactant. Each hollow member (14) has a first flat surface (16) and a second flat surface (18) arranged parallel to the first flat surface (16). At least one of the modules (12) includes a plurality of fuel cells (20). The fuel cells (20) are arranged on at least one of the first and second flat surfaces (16,18) of the at least one module (12). A first end (30) and a first side (32) of each module (12) has a first integral feature (34) to provide a spacer and a connection with an adjacent module (12) and a second end (38) and a second side (40) of each module (12) has a second integral feature (42) to provide a spacer and a connection with another adjacent module (12).Type: ApplicationFiled: November 10, 2008Publication date: March 12, 2009Inventors: Gary Wright, Nigel T. Hart, Gerard D. Agnew, Christopher Burrows
-
Patent number: 7473482Abstract: A solid oxide fuel cell module (30) comprises a plurality of fuel cells (36). Each fuel cell (36) comprises a first electrode (40), an electrolyte (42) and a second electrode (44). A plurality of interconnectors (38) are arranged to electrically connect the fuel cells (36) in electrical series. Each interconnector (38) electrically connects a first electrode (40) of one fuel cell (36) to a second electrode (44) of an adjacent fuel cell (36). The first electrode (40) comprises a first layer (40A) on the electrolyte (42 to optimize the electrochemical activity at the electrolyte (42) and a second layer (40B) on the first layer (40A) to provide electronic conduction perpendicular to the layers (40, 42, 44) of the fuel cell (36). The second layer (40B) is arranged such that electronic conduction perpendicular to the layers (40, 42, 44)) of the fuel cell (36) is different at different positions in the second layer (40B).Type: GrantFiled: July 23, 2004Date of Patent: January 6, 2009Assignee: Rolls-Royce plcInventors: Nigel T. Hart, Nieves Lapena-Rey, Gary J. Wright, Gerard D. Agnew
-
Patent number: 7465512Abstract: A fuel cell stack comprises a plurality of modules and each module comprises an elongate hollow member and one passage extending through the hollow member for the flow of a reactant. Each hollow member has a first flat surface and a second flat surface. At least one of the modules includes a plurality of fuel cells arranged on at least one of the first and second flat surfaces. Each module has a first and second integral feature to provide a spacer and a connection with its adjacent modules. The first integral feature comprises a third flat surface and the second integral feature comprises a fourth flat surface. The third flat surface is arranged at an intersecting angle to the first flat surface and the fourth flat surface is arranged at an intersecting angle to the second flat surface.Type: GrantFiled: October 1, 2004Date of Patent: December 16, 2008Assignee: Rolls-Royce plcInventors: Gary Wright, Nigel T Hart, Gerard D Agnew, Christopher Burrows
-
Patent number: 7422820Abstract: A solid oxide fuel cell stack (10) comprises a plurality of modules (12). Each module (12) comprises an elongate hollow member (14). Each hollow member (14) has at least one passage (32) extending longitudinally through the hollow member (14) for the flow of reactant. Each hollow member (14) has two parallel flat surfaces (16,18). At least one of the modules (12A, 12B, 12C) includes a plurality of solid oxide fuel cells (20). The solid oxide fuel cells (20) are arranged on the flat surfaces (16,18) of the modules (12A, 12B, 12C). At least one end (34) of each module (12) is connected to an end (36) of an adjacent module (12) to allow reactant to flow sequentially through the modules (12). The arrangement of the modules (12) provides compliance in the solid oxide fuel cell stack (10) and thermal and mechanical stresses in the solid oxide fuel cell stack (10) are reduced.Type: GrantFiled: January 21, 2004Date of Patent: September 9, 2008Assignee: Rolls-Royce plcInventors: Gerard D Agnew, Nigel T Hart, Michael J Oakely, Mark N Pashley, Eric W Dean
-
Patent number: 7399546Abstract: A solid oxide fuel cell (10) comprises an anode electrode (12), a cathode electrode (14) and an electrolyte (16) between the anode electrode (12) and the cathode electrode (14). A gaseous fuel is supplied to an anode chamber (18) partially defined by the anode electrode (12) and a gaseous oxidant is supplied to a cathode chamber (20) partially defined by the cathode electrode (14). The electrolyte (16) comprises a first dense non-porous layer (22), a second porous layer (24) on the first dense non-porous layer (22) and a third dense non-porous layer (26) on the second porous layer (24). The anode electrode (12) is arranged on the first dense non-porous layer (22) and the cathode electrode (14) is arranged on the third dense non-porous layer (26). The second porous layer (24) acts as a buffer between the first dense non-porous layer (22) and the third dense non-porous layer (26) to prevent defects propagating between the layers (22,26) and to prevent fuel and oxidant leaking through the electrolyte (16).Type: GrantFiled: December 21, 2005Date of Patent: July 15, 2008Assignee: Rolls-Royce plcInventors: Nigel T Hart, Gary J Wright, Gerard D Agnew, Mark Cassidy
-
Patent number: 7378174Abstract: A solid oxide fuel cell module comprises a hollow support member and a plurality of fuel cells spaced apart longitudinally on one surface of the hollow support member. A plurality of interconnectors electrically connect the fuel cells in electrical series. Each fuel cell comprises a first electrode, an electrolyte and a second electrode. The first electrode of each of the fuel cells are electrically connected to the second electrode of adjacent fuel cells by a plurality of interconnectors spaced apart laterally with respect to the hollow support member. A laterally extending end of the first electrode of the said adjacent fuel cell has a plurality of recesses spaced apart laterally with respect to the hollow support member. Each of the interconnectors is positioned in a respective one of the plurality of recesses in the laterally extending end of the first electrode of the said adjacent fuel cell.Type: GrantFiled: July 23, 2004Date of Patent: May 27, 2008Assignee: Rolls-Royce plcInventors: Nigel T. Hart, Gary J. Wright, Gerard D. Agnew
-
Publication number: 20040166390Abstract: A solid oxide fuel cell stack (10) comprises a plurality of modules (12). Each module (12) comprises an elongate hollow member (14). Each hollow member (14) has at least one passage (32) extending longitudinally through the hollow member (14) for the flow of reactant. Each hollow member (14) has two parallel flat surfaces (16,18). At least one of the modules (12A, 12B, 12C) includes a plurality of solid oxide fuel cells (20). The solid oxide fuel cells (20) are arranged on the flat surfaces (16,18) of the modules (12A, 12B, 12C). At least one end (34) of each module (12) is connected to an end (36) of an adjacent module (12) to allow reactant to flow sequentially through the modules (12). The arrangement of the modules (12) provides compliance in the solid oxide fuel cell stack (10) and thermal and mechanical stresses in the solid oxide fuel cell stack (10) are reduced.Type: ApplicationFiled: January 21, 2004Publication date: August 26, 2004Inventors: Gerard D. Agnew, Nigel T. Hart, Michael J. Oakely, Mark N. Pashley, Eric W. Dean