Patents by Inventor Nihan Tuncer
Nihan Tuncer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12077660Abstract: Techniques for debinding additively fabricated parts are described that do not require solvent debinding or catalytic debinding, and that may be performed using only thermal debinding in a furnace. As a result, in at least some cases debinding and sintering may take place sequentially within a single furnace. In some embodiments, the techniques may utilize particular materials as binders that allow for a thermal debinding process that does not negatively affect the parts.Type: GrantFiled: November 13, 2020Date of Patent: September 3, 2024Assignee: Desktop Metal, Inc.Inventors: John Reidy, Christopher Craven, Nihan Tuncer, Animesh Bose, Alexander C. Barbati, Ricardo Fulop, Brian D. Kernan, Karl-Heinz Schofalvi
-
Patent number: 12042998Abstract: Embodiments of the present disclosure are drawn to systems and methods for adjusting a three-dimensional (3D) model used in metal additive manufacturing to maintain dimensional accuracy and repeatability of a fabricated 3D part. These embodiments may be used to reduce or remove geometric distortions in the fabricated 3D part. One exemplary method may include: receiving, via one or more processors, a selection made by a user; receiving a 3D model of a desired part; retrieving at least one model constant based on the user's selection; receiving an input of at least one process variable setting from a set of process variable settings; generating transformation factors based on the at least one process variable parameter and the at least one model constant; transforming the 3D model of the desired part based on the transformation factors; and generating processing instructions for fabricating the transformed 3D model of the desired part.Type: GrantFiled: February 12, 2023Date of Patent: July 23, 2024Assignee: Desktop Metal, Inc.Inventors: Alexander Barbati, Michael Gibson, George Hudelson, Nicholas Mykulowycz, Brian Kernan, Nihan Tuncer
-
Patent number: 11858043Abstract: A system for generating a user-adjustable furnace profile, comprises a user interface configured to receive one or more materials properties from a user, a processor, and a memory with computer code instructions stored thereon. The memory is operatively coupled to the processor such that, when executed by the processor, the computer code instructions cause the system to implement communicating with a furnace to ascertain one or more thermal processes associated with the furnace, identifying one or more object characteristics associated with an object to be processed by furnace, and determining a thermal processing parameter profile of at least one thermal processing parameter corresponding to each of the thermal processes, based on (i) the one or more part characteristics and (ii) the one or more materials properties, the thermal processing parameter profile characterizing a cycle of the one or more thermal processes.Type: GrantFiled: January 10, 2022Date of Patent: January 2, 2024Assignee: Desktop Metal, Inc.Inventors: Nihan Tuncer, Brian D. Kernan, Animesh Bose, Mark Sowerbutts
-
Publication number: 20230264423Abstract: Embodiments of the present disclosure are drawn to systems and methods for adjusting a three-dimensional (3D) model used in metal additive manufacturing to maintain dimensional accuracy and repeatability of a fabricated 3D part. These embodiments may be used to reduce or remove geometric distortions in the fabricated 3D part. One exemplary method may include: receiving, via one or more processors, a selection made by a user; receiving a 3D model of a desired part; retrieving at least one model constant based on the user's selection; receiving an input of at least one process variable setting from a set of process variable settings; generating transformation factors based on the at least one process variable parameter and the at least one model constant; transforming the 3D model of the desired part based on the transformation factors; and generating processing instructions for fabricating the transformed 3D model of the desired part.Type: ApplicationFiled: February 12, 2023Publication date: August 24, 2023Applicant: Desktop Metal, Inc.Inventors: Alexander Barbati, Michael Gibson, George Hudelson, Nicholas Mykulowycz, Brian Kernan, Nihan Tuncer
-
Patent number: 11702367Abstract: Devices, systems, and methods are directed to binder jetting for forming three-dimensional parts having controlled, macroscopically inhomogeneous material composition. In general, a binder may be delivered to each layer of a plurality of layers of a powder of inorganic particles. An active component may be introduced, in a spatially controlled distribution, to at least one of the plurality of layers such that the binder, the powder of inorganic particles, and the active component, in combination, form an object. The object may be thermally processed into a three-dimensional part having a gradient of one or more physicochemical properties of a material at least partially formed from thermally processing the inorganic particles and the active component of the object.Type: GrantFiled: October 17, 2018Date of Patent: July 18, 2023Assignee: Desktop Metal, Inc.Inventors: Alexander Barbati, Michael Andrew Gibson, Nihan Tuncer, Brian Kernan
-
Patent number: 11597153Abstract: Embodiments of the present disclosure are drawn to systems and methods for adjusting a three-dimensional (3D) model used in metal additive manufacturing to maintain dimensional accuracy and repeatability of a fabricated 3D part. These embodiments may be used to reduce or remove geometric distortions in the fabricated 3D part. One exemplary method may include: receiving, via one or more processors, a selection made by a user; receiving a 3D model of a desired part; retrieving at least one model constant based on the user's selection; receiving an input of at least one process variable setting from a set of process variable settings; generating transformation factors based on the at least one process variable parameter and the at least one model constant; transforming the 3D model of the desired part based on the transformation factors; and generating processing instructions for fabricating the transformed 3D model of the desired part.Type: GrantFiled: June 26, 2019Date of Patent: March 7, 2023Assignee: Desktop Metal, Inc.Inventors: Alexander C. Barbati, Michael Andrew Gibson, George Hudelson, Nicholas Mark Mykulowycz, Brian D. Kernan, Nihan Tuncer
-
Patent number: 11472116Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.Type: GrantFiled: July 11, 2019Date of Patent: October 18, 2022Assignee: Desktop Metal, Inc.Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
-
Publication number: 20220326668Abstract: A system for generating a user-adjustable furnace profile, comprises a user interface configured to receive one or more materials properties from a user, a processor, and a memory with computer code instructions stored thereon. The memory is operatively coupled to the processor such that, when executed by the processor, the computer code instructions cause the system to implement communicating with a furnace to ascertain one or more thermal processes associated with the furnace, identifying one or more object characteristics associated with an object to be processed by furnace, and determining a thermal processing parameter profile of at least one thermal processing parameter corresponding to each of the thermal processes, based on (i) the one or more part characteristics and (ii) the one or more materials properties, the thermal processing parameter profile characterizing a cycle of the one or more thermal processes.Type: ApplicationFiled: January 10, 2022Publication date: October 13, 2022Applicant: Desktop Metal, Inc.Inventors: Nihan Tuncer, Brian D. Kernan, Animesh Bose, Mark Sowerbutts
-
Publication number: 20220075334Abstract: A system for generating a user-adjustable furnace profile, comprises a user interface configured to receive one or more materials properties from a user, a processor, and a memory with computer code instructions stored thereon. The memory is operatively coupled to the processor such that, when executed by the processor, the computer code instructions cause the system to implement communicating with a furnace to ascertain one or more thermal processes associated with the furnace, identifying one or more object characteristics associated with an object to be processed by furnace, and determining a thermal processing parameter profile of at least one thermal processing parameter corresponding to each of the thermal processes, based on (i) the one or more part characteristics and (ii) the one or more materials properties, the thermal processing parameter profile characterizing a cycle of the one or more thermal processes.Type: ApplicationFiled: October 21, 2021Publication date: March 10, 2022Applicant: Desktop Metal, Inc.Inventors: Nihan Tuncer, Brian D. Kernan, Animesh Bose, Mark Sowerbutts
-
Patent number: 11237529Abstract: A system for generating a user-adjustable furnace profile, comprises a user interface configured to receive one or more materials properties from a user, a processor, and a memory with computer code instructions stored thereon. The memory is operatively coupled to the processor such that, when executed by the processor, the computer code instructions cause the system to implement communicating with a furnace to ascertain one or more thermal processes associated with the furnace, identifying one or more object characteristics associated with an object to be processed by furnace, and determining a thermal processing parameter profile of at least one thermal processing parameter corresponding to each of the thermal processes, based on (i) the one or more part characteristics and (ii) the one or more materials properties, the thermal processing parameter profile characterizing a cycle of the one or more thermal processes.Type: GrantFiled: December 18, 2018Date of Patent: February 1, 2022Assignee: Desktop Metal, Inc.Inventors: Nihan Tuncer, Brian Kernan, Animesh Bose, Mark Sowerbutts
-
Publication number: 20210331242Abstract: Devices, systems, and methods are directed to binder jetting for forming three-dimensional parts having controlled, macroscopically inhomogeneous material composition. In general, a binder may be delivered to each layer of a plurality of layers of a powder of inorganic particles. An active component may be introduced, in a spatially controlled distribution, to at least one of the plurality of layers such that the binder, the powder of inorganic particles, and the active component, in combination, form an object. The object may be thermally processed into a three-dimensional part having a gradient of one or more physicochemical properties of a material at least partially formed from thermally processing the inorganic particles and the active component of the object.Type: ApplicationFiled: October 17, 2018Publication date: October 28, 2021Applicant: Desktop Metal, Inc.Inventors: Alexander Barbati, Michael Andrew Gibson, Nihan Tuncer, Brian Kernan
-
Publication number: 20210260654Abstract: Techniques for debinding additively fabricated parts are described that do not require solvent debinding or catalytic debinding, and that may be performed using only thermal debinding in a furnace. As a result, in at least some cases debinding and sintering may take place sequentially within a single furnace. In some embodiments, the techniques may utilize particular materials as binders that allow for a thermal debinding process that does not negatively affect the parts.Type: ApplicationFiled: January 26, 2021Publication date: August 26, 2021Applicant: Desktop Metal, Inc.Inventors: John Reidy, Nihan Tuncer, Animesh Bose, Christopher Craven, Alexander C. Barbati, Ricardo Fulop, Karl-Heinz Schofalvi
-
Publication number: 20210147665Abstract: Techniques for debinding additively fabricated parts are described that do not require solvent debinding or catalytic debinding, and that may be performed using only thermal debinding in a furnace. As a result, in at least some cases debinding and sintering may take place sequentially within a single furnace. In some embodiments, the techniques may utilize particular materials as binders that allow for a thermal debinding process that does not negatively affect the parts.Type: ApplicationFiled: November 13, 2020Publication date: May 20, 2021Applicant: Desktop Metal, Inc.Inventors: John Reidy, Christopher Craven, Nihan Tuncer, Animesh Bose, Alexander C. Barbati, Ricardo Fulop, Brian D. Kernan, Karl-Heinz Schofalvi
-
Publication number: 20210114110Abstract: A method of maintaining part geometry fidelity during infiltration of a metallic preform. The preform and an infiltration barrier are formed, either independently or together during an additive manufacturing process. The infiltration barrier prevents infiltrant from bleeding out from the preform where it is present, thus protecting fine geometries that would otherwise be filled with infiltrant.Type: ApplicationFiled: July 12, 2019Publication date: April 22, 2021Applicant: Desktop Metal, Inc.Inventors: Timothy Sercombe, Ellen Benn, Michael Andrew Gibson, Nihan Tuncer
-
Patent number: 10889883Abstract: In a method for forming a shape memory alloy wire a shape memory alloy composition of CuAlMnNi excluding grain refiner elements, is mixed, including between about 20 at % and about 28 at % Al, between about 2 at % and about 4 at % Ni, between about 3 at % and about 5 at % Mn, and Cu as a remaining balance. The mixture is heated between about 1100° C. and about 1400° C. and ejected from a crucible, at an ejection pressure of between about 3 bar and about 5 bar through a nozzle having a nozzle diameter of between about 200 microns and about 280 microns, to a face of a melt spinning wheel with speed of between about 9 m/s and about 13 m/s until there is formed a shape memory alloy wire having a length of at least about 1.5 meters and a diameter of no more than about 150 microns.Type: GrantFiled: November 28, 2018Date of Patent: January 12, 2021Assignee: Massachusetts Institute of TechnologyInventors: Nihan Tuncer, Christopher A. Schuh
-
Patent number: 10589467Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.Type: GrantFiled: July 11, 2019Date of Patent: March 17, 2020Assignee: Desktop Metal, Inc.Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
-
Publication number: 20200024715Abstract: In a method for forming a shape memory alloy wire a shape memory alloy composition of CuAlMnNi excluding grain refiner elements, is mixed, including between about 20 at % and about 28 at % Al, between about 2 at % and about 4 at % Ni, between about 3 at % and about 5 at % Mn, and Cu as a remaining balance. The mixture is heated between about 1100° C. and about 1400° C. and ejected from a crucible, at an ejection pressure of between about 3 bar and about 5 bar through a nozzle having a nozzle diameter of between about 200 microns and about 280 microns, to a face of a melt spinning wheel with speed of between about 9 m/s and about 13 m/s until there is formed a shape memory alloy wire having a length of at least about 1.5 meters and a diameter of no more than about 150 microns.Type: ApplicationFiled: November 28, 2018Publication date: January 23, 2020Applicant: Massachusetts Institute of TechnologyInventors: Nihan Tuncer, Christopher A. Schuh
-
Publication number: 20190329502Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.Type: ApplicationFiled: July 11, 2019Publication date: October 31, 2019Applicant: Desktop Metal, Inc.Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
-
Publication number: 20190329500Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.Type: ApplicationFiled: July 11, 2019Publication date: October 31, 2019Applicant: Desktop Metal, Inc.Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart
-
Publication number: 20190329501Abstract: Complexity of a geometry of a desired (i.e., target) three-dimensional (3D) object being produced by an additive manufacturing system, as well as atypical behavior of the processes employed by such a system, pose challenges for producing a final version of the desired 3D object with fidelity relative to the desired object. An example embodiment enables such challenges to be overcome as a function of feedback to enable the final version to be produced with fidelity. The feedback may be at least one value that is associated with at least one characteristic of a printed object following processing of the printed object. Such feedback may be obtained as part of a calibration process of the 3D printing system or as part of an operational process of the 3D printing system.Type: ApplicationFiled: July 11, 2019Publication date: October 31, 2019Applicant: Desktop Metal, Inc.Inventors: Jay Tobia, Nihan Tuncer, Aaron Preston, Ricardo Fulop, Michael A. Gibson, Richard Remo Fontana, Anastasios John Hart