Patents by Inventor Nikita Kotlov

Nikita Kotlov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180357378
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample; determining a molecular-functional (MF) profile using the data; determining sets of visual characteristics for GUI elements using the data; generating a personalized GUI using the determined visual characteristics; and presenting the generated personalized GUI to a user.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov
  • Publication number: 20180357361
    Abstract: Techniques for training a statistical model for determining whether a subject is likely to respond to a checkpoint blockade therapy. The techniques include obtaining, for each subject in a plurality of subjects having responders to a checkpoint blockade therapy and non-responders to the therapy, expression data indicating expression levels for a plurality of genes; determining, for the plurality of genes, expression level differences between the responders and the non-responders using the expression data; identifying, using the determined expression level differences, a subset of genes associated with a therapy in the plurality of genes; training, using the expression data, a statistical model for predicting efficacy of the therapy, the training comprising: identifying at least some of the subset of genes as a predictor set of genes to include in the statistical model; and estimating, using the expression data, parameters of the statistical model associated with the predictor set of genes.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Feliks Frenkel, Nikita Kotlov, Alexander Bagaev, Maksym Artomov, Ravshan Ataullakhanov
  • Publication number: 20180357372
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample from a subject; determining a molecular-functional (MF) profile for the subject; identifying an MF profile cluster with which to associate the MF profile for the subject; and clustering the plurality of MF profiles to obtain the MF profile clusters.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov
  • Publication number: 20180357374
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for biological samples; determining a respective plurality of molecular-functional (MF) profiles for a plurality of subjects; clustering the plurality of MF profiles to obtain MF profile clusters; determining a molecular-functional (MF) profile for an additional subject; and identifying, from among the MF profile clusters, a particular MF profile cluster with which to associate the MF profile for the subject.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov
  • Publication number: 20180357373
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample from a plurality of subjects, determining a respective plurality of molecular-functional (MF) profiles for the plurality of subjects, and storing the plurality of MF profiles in association with information identifying the particular cancer type.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov
  • Publication number: 20180357362
    Abstract: Techniques for determining whether a subject is likely to respond to an immune checkpoint blockade therapy.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Feliks Frenkel, Nikita Kotlov, Alexander Bagaev, Maksym Artomov, Ravshan Ataullakhanov
  • Publication number: 20180357377
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample; determining a molecular-functional (MF) profile for a subject using the data; determining visual characteristics GUI elements using the data; generating a GUI personalized to the subject using the determined visual characteristics; and presenting the generated personalized GUI to a user.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Alexander Bagaev, Feliks Frenke, Nikita Kotlov, Ravshan Ataullakhanov
  • Publication number: 20180357376
    Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole exome sequencing (WES) data for a biological sample; determining a molecular-functional (MF) profile for the subject at least in part by determining first and second visual characteristics for first and second GUI elements using the data; generating a personalized GUI personalized to the subject using the first and second visual characteristics; and presenting the generated personalized GUI to a user.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Alexander Bagaev, Feliks Frenkel, Nikita Kotlov, Ravshan Ataullakhanov