Patents by Inventor Nikolay Ledentsov

Nikolay Ledentsov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170317472
    Abstract: Optoelectronic device undergoes selective chemical transformation like alloy compositional intermixing forming a non-transformed core region and an adjacent to it periphery where transformation has occurred. Activated by selective implantation or diffusion of impurities like Zinc or Silicon, implantation or diffusion of point defects, or laser annealing, transformation results in a change of the refractive index such that the vertical profile of the refractive index at the periphery is distinct from that in the core. Therefore the optical modes of the core are no longer orthogonal to the modes of the periphery, are optically coupled to them and exhibit lateral leakage losses to the periphery. High order transverse optical modes associated to the same vertical optical mode have higher lateral leakage losses to the periphery than the fundamental transverse optical mode, thus supporting single transverse mode operation of the device.
    Type: Application
    Filed: February 10, 2016
    Publication date: November 2, 2017
    Applicant: VI Systems GmbH
    Inventors: Nikolay LEDENTSOV, Nikolay LEDENTSOV, JR., Vitaly SHCHUKIN
  • Publication number: 20170201067
    Abstract: A semiconductor optoelectronic system contains a primary semiconductor optoelectronic system, a first wavefront, a set of diffracting elements, and a second wavefront. The primary semiconductor electronic system is a single laser of a set of gain chips, bars, or stacks coherently coupled in an external resonator, the system is capable to generate a single vertical mode single lateral mode laser light. The near field on the first wavefront in the immediate vicinity of the system contains illuminated spots and dark spots, the latter dominate. The set of diffracting element transforms the near field of the laser light, and, hence, also the far field pattern, providing a significantly smaller beam divergence and, respectively, a higher brightness.
    Type: Application
    Filed: December 12, 2013
    Publication date: July 13, 2017
    Inventors: Vitaly Shchukin, Nikolay Ledentsov
  • Publication number: 20160261858
    Abstract: A device for generation of three-dimensional images in the observer's eye using at least one two-dimensional display and an optical system with an adjustable focal length. The display generates planar images corresponding to the different depths of the designed three dimensional (3D) image and the images are then directed to at least one mirror or lens with the adjustable focal length synchronized to the particular image. The optical system generates virtual images at different virtual planes in such a way that the eye receives a complete 3D virtual image.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 8, 2016
    Inventor: Nikolay Ledentsov
  • Publication number: 20160127722
    Abstract: A device for generation of three-dimensional images in the observer's eye using at least one two-dimensional display and an optical system with an adjustable focal length. The display generates planar images corresponding to the different depths of the designed three dimensional (3D) image and the images are then directed to at least one mirror or lens with the adjustable focal length synchronized to the particular image. The optical system generates virtual images at different virtual planes in such a way that the eye receives a complete 3D virtual image.
    Type: Application
    Filed: December 24, 2015
    Publication date: May 5, 2016
    Inventor: Nikolay Ledentsov
  • Patent number: 8890113
    Abstract: A light-emitting device epitaxially-grown on a GaAs substrate which contains an active region composed of AlxGa1-xAs alloy or of related superlattices of this materials system is disclosed. This active region either includes tensile-strained GaP-rich insertions aimed to increase the forbidden gap of the active region targeting the bright red, orange, yellow, or green spectral ranges, or is confined by regions with GaP-rich insertions aimed to increase the barrier height for electrons in the conduction band preventing the leakage of the nonequilibrium carriers outside of the light-generation region.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: November 18, 2014
    Inventors: Nikolay Ledentsov, James Lott, Vitaly Shchukin
  • Patent number: 8576472
    Abstract: A device representing a reflector, for example an evanescent reflector or a multilayer interference reflector, with at least one reflectivity stopband is disclosed. A medium with means of generating optical gain is introduced into the layer or several layers of the reflector. The optical gain spectrum preferably overlaps with the spectral range of the reflectivity stopband. This reflector is attached to multilayer passive cavity structure made of semiconducting, and/or dielectric, and/or metallic materials with the inserted tools of achieving wavelength selection of the optical modes. For example, volume Bragg gratings, distributed feedback gratings or patterns, using of vertical optical cavities surrounded by multilayer Bragg reflectors can be applied. The optical modes of the passive optical cavity partially penetrate into the gain region of the reflector.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: November 5, 2013
    Inventor: Nikolay Ledentsov
  • Patent number: 8472496
    Abstract: A device representing a reflector, for example, an evanescent reflector or a multilayer interference reflector with at least one reflectivity stopband is disclosed. A medium with means of generating optical gain is introduced into the layer or several layers of the reflector. The optical gain spectrum preferably overlaps with the spectral range of the reflectivity stopband. This device can be attached to air, semiconductor or dielectric material or multilayer structures and provide a tool for preferential amplification of the optical waves propagating at larger angles with respect to the interface with the evanescent or the multilayer interference reflector. Thus angle selective amplification or generation of light is possible. Several evanescent or interference reflectors can be used to serve the goal of preferable amplification the said optical waves.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: June 25, 2013
    Assignee: VI Systems GmbH
    Inventor: Nikolay Ledentsov
  • Patent number: 8447187
    Abstract: An optoelectronic interconnect which includes optical transmitter and detector having capacitances below 150 femto-Farads each suitable for transmission of optical signals at speeds at and above 20 Gigabit per second at power consumption below 10 milliWatt per Gigabit per second.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: May 21, 2013
    Assignee: VI Systems GmbH
    Inventors: Nikolay Ledentsov, Vitaly Shchukin
  • Publication number: 20130092896
    Abstract: A light-emitting device epitaxially-grown on a GaAs substrate which contains an active region composed of AlxGa1-xAs alloy or of related superlattices of this materials system is disclosed. This active region either includes tensile-strained GaP-rich insertions aimed to increase the forbidden gap of the active region targeting the bright red, orange, yellow, or green spectral ranges, or is confined by regions with GaP-rich insertions aimed to increase the barrier height for electrons in the conduction band preventing the leakage of the nonequilibrium carriers outside of the light-generation region.
    Type: Application
    Filed: June 4, 2012
    Publication date: April 18, 2013
    Applicant: VI Systems GmbH
    Inventors: Nikolay Ledentsov, James Lott, Vitaly Shchukin
  • Publication number: 20120105932
    Abstract: A device representing a reflector, for example an evanescent reflector or a multilayer interference reflector, with at least one reflectivity stopband is disclosed. A medium with means of generating optical gain is introduced into the layer or several layers of the reflector. The optical gain spectrum preferably overlaps with the spectral range of the reflectivity stopband. This reflector is attached to multilayer passive cavity structure made of semiconducting, and/or dielectric, and/or metallic materials with the inserted tools of achieving wavelength selection of the optical modes. For example, volume Bragg gratings, distributed feedback gratings or patterns, using of vertical optical cavities surrounded by multilayer Bragg reflectors can be applied. The optical modes of the passive optical cavity partially penetrate into the gain region of the reflector.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 3, 2012
    Inventor: Nikolay Ledentsov
  • Publication number: 20110206380
    Abstract: An optoelectronic interconnect which includes optical transmitter and detector having capacitances below 150 femto-Farads each suitable for transmission of optical signals at speeds at and above 20 Gigabit per second at power consumption below 10 milliWatt per Gigabit per second
    Type: Application
    Filed: February 17, 2011
    Publication date: August 25, 2011
    Inventors: Nikolay Ledentsov, Vitaly Shchukin
  • Publication number: 20110188116
    Abstract: A device for generation of three-dimensional images in the observer's eye using at least one two-dimensional display and an optical system with an adjustable focal length. The display generates planar images corresponding to the different depths of the designed three dimensional (3D) image and the images are then directed to at least one mirror or lens with the adjustable focal length synchronized to the particular image. The optical system generates virtual images at different virtual planes in such a way that the eye receives a complete 3D virtual image.
    Type: Application
    Filed: January 26, 2011
    Publication date: August 4, 2011
    Inventor: Nikolay Ledentsov Ledentsov
  • Publication number: 20110007764
    Abstract: A device representing a reflector, for example, an evanescent reflector or a multilayer interference reflector with at least one reflectivity stopband is disclosed. A medium with means of generating optical gain is introduced into the layer or several layers of the reflector. The optical gain spectrum preferably overlaps with the spectral range of the reflectivity stopband. This device can be attached to air, semiconductor or dielectric material or multilayer structures and provide a tool for preferential amplification of the optical waves propagating at larger angles with respect to the interface with the evanescent or the multilayer interference reflector. Thus angle selective amplification or generation of light is possible. Several evanescent or interference reflectors can be used to serve the goal of preferable amplification the said optical waves.
    Type: Application
    Filed: July 6, 2010
    Publication date: January 13, 2011
    Inventor: Nikolay Ledentsov