Patents by Inventor Nikolay Timofeyevich Timofeev

Nikolay Timofeyevich Timofeev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11805673
    Abstract: A light extraction apparatus for an organic light-emitting diode (OLED) includes an OLED emitter (100), a plurality of tapered reflectors (210), and a spacer layer (202). Each tapered reflector includes a first surface (212), a second surface (214) opposite to the first surface and comprising a surface area larger than a surface area of the first surface, and at least one side surface (216) extending between the first surface and the second surface. The spacer layer (202) includes a first surface coupled to the OLED emitter and a second surface coupled to the first surface of each of the plurality of tapered reflectors. Light emitted from the OLED passes through the spacer layer and into the plurality of tapered reflectors. The at least one side surface of each of the plurality of tapered reflectors includes a slope to redirect light into an escape cone and out of the second surface of the corresponding tapered reflector.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: October 31, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Dmitri Vladislavovich Kuksenkov, Nikolay Timofeyevich Timofeev
  • Patent number: 11709397
    Abstract: A backlight includes a substrate, a plurality of light sources, a reflective layer, a light guide plate, a pattern of light extractors, a plurality of patterned reflectors, and a diffusive layer. The plurality of light sources are proximate the substrate. The reflective layer is on the substrate. The light guide plate is proximate the plurality of light sources. The pattern of light extractors is on the light guide plate. The plurality of patterned reflectors are on the light guide plate. Each patterned reflector is aligned with a corresponding light source. The diffusive layer is on the light guide plate.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: July 25, 2023
    Assignee: Corning Incorporated
    Inventors: Kirk Richard Allen, Fedor Dmitrievich Kiselev, Dmitri Vladislavovich Kuksenkov, Christopher Michael Lynn, Pamela Arlene Maurey, Xiang-Dong Mi, Scott Christopher Pollard, Nikolay Timofeyevich Timofeev, Andrii Varanytsia
  • Patent number: 11280698
    Abstract: Non-contact methods of predicting an insertion loss of a test optical fiber connector are disclosed. Light is sent down the at least one optical fiber of the connector in the fundamental mode to emit an output light beam. The output-beam image is captured at different distances from the fiber end faces to define multiple output-beam images each associated with one of the multiple measurement positions. A Gaussian curve is then fitted to the multiple output-beam images to determine a mode field diameter, an offset, and a tilt of the output light beam. A Gaussian field model that incorporates the offset, the tilt, and the mode-field diameter is then used to predict the insertion loss when connecting to a reference optical fiber of a reference optical fiber connector.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: March 22, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Jinxin Huang, Dmitri Vladislavovich Kuksenkov, William James Miller, Nikolay Timofeyevich Timofeev, William Allen Wood
  • Publication number: 20210397049
    Abstract: A backlight includes a substrate, a plurality of light sources, a reflective layer, a light guide plate, a pattern of light extractors, a plurality of patterned reflectors, and a diffusive layer. The plurality of light sources are proximate the substrate. The reflective layer is on the substrate. The light guide plate is proximate the plurality of light sources. The pattern of light extractors is on the light guide plate. The plurality of patterned reflectors are on the light guide plate. Each patterned reflector is aligned with a corresponding light source. The diffusive layer is on the light guide plate.
    Type: Application
    Filed: November 5, 2019
    Publication date: December 23, 2021
    Inventors: Kirk Richard Allen, Fedor Dmitrievich Kiselev, Dmitri Vladislavovich Kuksenkov, Christopher Michael Lynn, Pamela Arlene Maurey, Xiang-Dong Mi, Scott Christopher Pollard, Nikolay Timofeyevich Timofeev, Andrii Varanytsia
  • Publication number: 20210234131
    Abstract: A light extraction apparatus for an organic light-emitting diode (OLED) includes an OLED emitter (100), a plurality of tapered reflectors (210), and a spacer layer (202). Each tapered reflector includes a first surface (212), a second surface (214) opposite to the first surface and comprising a surface area larger than a surface area of the first surface, and at least one side surface (216) extending between the first surface and the second surface. The spacer layer (202) includes a first surface coupled to the OLED emitter and a second surface coupled to the first surface of each of the plurality of tapered reflectors. Light emitted from the OLED passes through the spacer layer and into the plurality of tapered reflectors. The at least one side surface of each of the plurality of tapered reflectors includes a slope to redirect light into an escape cone and out of the second surface of the corresponding tapered reflector.
    Type: Application
    Filed: June 6, 2018
    Publication date: July 29, 2021
    Inventors: Dmitri Vladislavovich Kuksenkov, Nikolay Timofeyevich Timofeev
  • Publication number: 20210025780
    Abstract: Non-contact methods of predicting an insertion loss of a test optical fiber connector are disclosed. Light is sent down the at least one optical fiber of the connector in the fundamental mode to emit an output light beam. The output-beam image is captured at different distances from the fiber end faces to define multiple output-beam images each associated with one of the multiple measurement positions. A Gaussian curve is then fitted to the multiple output-beam images to determine a mode field diameter, an offset, and a tilt of the output light beam. A Gaussian field model that incorporates the offset, the tilt, and the mode-field diameter is then used to predict the insertion loss when connecting to a reference optical fiber of a reference optical fiber connector.
    Type: Application
    Filed: July 20, 2020
    Publication date: January 28, 2021
    Inventors: Jinxin Huang, Dmitri Vladislavovich Kuksenkov, William James Miller, Nikolay Timofeyevich Timofeev, William Allen Wood
  • Publication number: 20190221780
    Abstract: Apparatus and methods for improved light extraction from top-emitting OLEDs used to form displays include an array of light-emitting apparatus (60) each having the OLED (32) and a light-extraction apparatus (64) that includes an index-matching layer (70) and a tapered reflector (51). The tapered reflector (51) has the form of an inverted truncated pyramid, with the narrow end (58) interfacing with the OLED (32) through the index-matching layer (70). Light from the OLED undergoes total internal reflection within the tapered reflector (51) at the tapered reflector side surfaces (56) and is directed toward the top surface (54) of the tapered reflector (51). This light falls within the escape cone (59) of the top surface (54) and so exits the top surface (54). The OLED display (30) has a substrate that supports an array of OLEDs (32) and also includes an array of the tapered reflectors (51) operably arranged with respect to the OLEDs (32), and an encapsulation layer (100) atop the tapered reflector array.
    Type: Application
    Filed: June 2, 2017
    Publication date: July 18, 2019
    Inventors: Tomohiro Ishikawa, Kiat Chyai Kang, Dmitri Vladislavovich Kuksenkov, Michal Mlejnek, Nikolay Timofeyevich Timofeev
  • Patent number: 9651743
    Abstract: Gradient index (GRIN) lens holders employing groove alignment feature(s) and a recessed cover, as well as optical connectors and methods employing such GRIN lens holders, are disclosed. In one embodiment, the GRIN lens holder contains one or more internal groove alignment features configured to secure one or more GRIN lenses in the GRIN lens holder. The groove alignment features are also configured to accurately align the end faces of the GRIN lenses. The GRIN lens holder also contains a recessed cover having a front face that is negatively offset with respect to a mating surface of the GRIN lens holder. The GRIN lens holders disclosed herein can be provided as part of an optical fiber ferrule and/or a fiber optic component or connector for making optical connections.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: May 16, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: John Joseph Costello, III, Michael de Jong, Davide Domenico Fortusini, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther, Nikolay Timofeyevich Timofeev
  • Patent number: 9158080
    Abstract: Light-coupling apparatus and methods for light-diffusing optical fibers are disclosed. The light-coupling apparatus includes a light-diffusing fiber bundle having an end section made up of tightly packed cores by removing the claddings. The spaces between the cores are filled with a material having a refractive index equal to or less than that of the cores. A light-emitting diode light source can be butt-coupled to the bundled-core end of the light-diffusing fiber bundle or can be coupled thereto via a reflective concentrator. A method of forming a flat and smooth end on a cleaved fiber that has a rough end is also disclosed.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: October 13, 2015
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Nikolay Timofeyevich Timofeev
  • Publication number: 20150055915
    Abstract: Light-coupling apparatus and methods for light-diffusing optical fibers are disclosed. The light-coupling apparatus includes a light-diffusing fiber bundle having an end section made up of tightly packed cores by removing the claddings. The spaces between the cores are filled with a material having a refractive index equal to or less than that of the cores. A light-emitting diode light source can be butt-coupled to the bundled-core end of the light-diffusing fiber bundle or can be coupled thereto via a reflective concentrator. A method of forming a flat and smooth end on a cleaved fiber that has a rough end is also disclosed.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Nikolay Timofeyevich Timofeev
  • Publication number: 20140185986
    Abstract: Gradient index (GRIN) lens holders employing groove alignment feature(s) and a recessed cover, as well as optical connectors and methods employing such GRIN lens holders, are disclosed. In one embodiment, the GRIN lens holder contains one or more internal groove alignment features configured to secure one or more GRIN lenses in the GRIN lens holder. The groove alignment features are also configured to accurately align the end faces of the GRIN lenses. The GRIN lens holder also contains a recessed cover having a front face that is negatively offset with respect to a mating surface of the GRIN lens holder. The GRIN lens holders disclosed herein can be provided as part of an optical fiber ferrule and/or a fiber optic component or connector for making optical connections.
    Type: Application
    Filed: March 5, 2014
    Publication date: July 3, 2014
    Applicant: Corning Optical Communications LLC
    Inventors: John Joseph Costello, III, Michael de Jong, Davide Domenico Fortusini, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther, Nikolay Timofeyevich Timofeev