Patents by Inventor Nils Holmstrom

Nils Holmstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110166614
    Abstract: An analyte measuring system includes implantable medical device having a RF signal source arranged for generating a RF signal and a transmitting antenna for transmitting the RF signal into a surrounding tissue in a subject body. The system has a receiving RF antenna for receiving the RF signal from the tissue and a signal processor arranged for generating an estimate of a concentration of an analyte in the tissue based on a spectral analysis of the received RF signal.
    Type: Application
    Filed: December 21, 2007
    Publication date: July 7, 2011
    Inventors: Hans Abrahamson, Anders Björling, Tomas Snitting, Nils Holmström, Tom Eriksson
  • Publication number: 20110144508
    Abstract: An implantable medical device has an impedance determiner for determining a cardiogenic impedance signal based on electric signals sensed by connected electrodes. A parameter calculator processes the impedance signal to calculate an impedance parameter representative of the cardiogenic impedance in connection with the diastolic phase of a heart cycle. This parameter is then employed by the device for monitoring acute decompensated heart failure status of a subject.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 16, 2011
    Inventors: Andreas Blomqvist, Nils Holmström, Sven-Erik Hedberg, Malin Öhlander
  • Publication number: 20100298904
    Abstract: Implantable heart stimulator connectable to an electrode arrangement has a pulse generator adapted to deliver stimulation pulses to a heart of a subject; an impedance measurement unit adapted monitor at least one heart chamber of the heart of the subject to measure the impedance in the at least one monitored heart chamber for generating an impedance signal corresponding to the measured impedance. The impedance signal is applied to a processor where the signal is processed, according to specified criteria, and a fractionation index value is determined represented by the curve length of the impedance signal during a predetermined measurement period. The fractionation index value is a measure of different degrees of mechanical dyssynchrony of the heart.
    Type: Application
    Filed: January 28, 2008
    Publication date: November 25, 2010
    Inventors: Andreas Blomqvist, Nils Holmström, Malin Öhlander, Sven-Erik Hedberg
  • Publication number: 20100292550
    Abstract: An analyte measuring system has an implantable medical device having a signal source arranged for generating a current signal and electrodes for applying the current signal to a surrounding tissue in a subject body. The device measures a resulting voltage signal with the electrodes and calculates an impedance signal therefrom. The system comprises a signal processor arranged for generating an estimate of a concentration of an analyte in the tissue based on a spectrum analysis of the determined impedance signal.
    Type: Application
    Filed: December 21, 2007
    Publication date: November 18, 2010
    Inventors: Hans Abrahamson, Anders Björling, Tomas Snitting, Nils Holmström
  • Publication number: 20100179411
    Abstract: In a method and implantable medical device for ventricular tachyarrhythmia detection and classification, upon detection of a ventricular tachyarrhythmia based on an electrocardiogram signal, cardiogenic impedance data representative of ventricular volume dynamics are collected and used for classifying the detected tachyarrhythmia as stable or unstable. In the latter case but typically not in the former case, defibrillation shocks or other forms of therapy are applied to combat the unstable ventricular tachyarrhythmia.
    Type: Application
    Filed: June 13, 2007
    Publication date: July 15, 2010
    Inventors: Nils Holmström, Andreas Blomqvist, Sven-Erik Hedberg, Malin Öhlander
  • Publication number: 20100121400
    Abstract: An implantable cardiac device has a heart stimulator for electrically stimulating the heart of a patient, detector that measures a physiologic parameter that is affected by the status of a cardiovascular disease associated with sympathetic activation, a signal processor that determines at least one of a low frequency, LF, and a very low frequency, VLF, Mayer wave component in the measured parameter, and analyzer that automatically analyzes the determined Mayer wave component in relation to a predetermined reference value to determine the status of the cardiovascular disease. The detector is a cardio-mechanical parameter detector that measures, as said physiologic parameter, a mechanical change in at least one of the four chambers of the heart. In a corresponding method for monitoring the status of a cardiovascular disease associated with sympathetic activation of a patient having an implantable electric heart stimulator a physiologic parameter affected by the cardiac disease is measured.
    Type: Application
    Filed: March 23, 2007
    Publication date: May 13, 2010
    Inventors: Nils Holmström, Malin Öhlander, Kjell Norén, Andreas Blomqvist, Karin Ljungström
  • Publication number: 20100113961
    Abstract: The present invention relates to a method for determining the posture of a patient. The method comprises the steps of: initiating (50, 52) a patient posture determining session by performing an electrical bio-impedance measurement session in at least one of a number of different electrode configurations in order to measure an impedance value for the at least one configuration; obtaining reference impedance values (54) stored in advance for the at least one configuration and for at least one potential posture of the patient; comparing (54) the measured impedance value for the at least one configuration with corresponding stored reference impedance values for at least one potential posture of the patient; and determining (56) the present posture of the patient by using results from the comparison between measured impedance values and the stored reference impedance values.
    Type: Application
    Filed: June 29, 2005
    Publication date: May 6, 2010
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Malin Öhlander, Nils Holmström, Kjell Norén
  • Publication number: 20100099994
    Abstract: An implantable heart analyzing device has a housing and a control circuit located within said housing. The control circuit generates an output signal adapted to actuate an activator, which is able to make a wall of the heart deflect or vibrate. The control circuit also communicates with a sensor, which can be identical with the activator, with which the movement of the heart wall can be sensed. The control circuit executes a procedure that involves the generation of an output signal and sensing a corresponding sensor signal, and to be able to derive information concerning the tension of the heart wall. An implantable heart analyzing includes the aforementioned heart analyzing device, as well as the activator and the sensor. The heart analyzing device and the system implement a method that results in generation of the aforementioned information concerning the tension of the heart wall.
    Type: Application
    Filed: February 28, 2007
    Publication date: April 22, 2010
    Inventors: Nils Holmström, Andreas Blomqvist, Berit Larsson, Karin Järverud, Sven-Erik Hedberg
  • Publication number: 20100100147
    Abstract: In a method and medical device for detecting an ischemic episode and to determine a location of ischemia in a heart of a patient, an impedance measuring circuit measures the impedances in the tissue between electrodes of at least one electrode configuration according to a predetermined measurement scheme and an ischemia detector evaluates the measured impedance values using at least one reference impedance image of the heart to detect changes in the measured impedances that are consistent with an ischemia and to determine a location of the ischemia to at least one region of the image.
    Type: Application
    Filed: February 28, 2007
    Publication date: April 22, 2010
    Inventor: Nils Holmstrom
  • Publication number: 20100041970
    Abstract: An implantable medical device has an oxygen sensor adapted to measure the level of oxygen in oxygenized blood, and to generate an oxygen measurement signal in dependence of the level of oxygen. The oxygen sensor is adapted to perform measurements inside the heart, of blood entering the left atrium of a patient's heart. The obtained oxygen measurement signal is compared to a predetermined threshold level and an indication signal is generated in dependence of the comparison. The, indication signal is indicative of the lung functionality of the patient.
    Type: Application
    Filed: November 27, 2007
    Publication date: February 18, 2010
    Inventors: Sven-Erik Hedberg, Andreas Blomqvist, Karin Järverud, Karin Ljungström, Leif Lindkvist, Urban Lönn, Nils Holmström
  • Publication number: 20090281438
    Abstract: An implantable heart monitoring system includes a housing configured for implantation in a subject, at least one sensor member implanted relative to the heart of the subject to detect an electrical signal related to cardiac activity of the heart, a control circuit in the housing, and a memory accessible by the control circuit.
    Type: Application
    Filed: June 16, 2005
    Publication date: November 12, 2009
    Inventor: Nils Holmström
  • Publication number: 20090216291
    Abstract: In a system and method for detecting electrical cardiac events, and a heart stimulator embodying such a system, cardiac events are detected in respective chambers of a heart by sensing electrical signals in at least two different chambers of the heart and forming a difference signal from the sensed signals, and using the difference signal to automatically distinguish between events originating from one of the chambers and events originating in another of the chambers. At least one of the sensed signals is sensed in a coronary vein on the left atrium or the left ventricle.
    Type: Application
    Filed: January 31, 2006
    Publication date: August 27, 2009
    Inventors: Nils Holmström, Anders Björling
  • Patent number: 7569020
    Abstract: In a method and apparatus for measuring the ejection fraction in a mammalian heart, the opening and closing of a heart valve is sensed with an implanted sensor, and a pre-ejection period is measured as a function of the sensed opening and closing of the heart valve. The ventricular ejection time also is measured, and the ejection fraction is determined as a function of the measured pre-ejection period and the ejection time.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: August 4, 2009
    Assignee: St. Jude Medical AB
    Inventors: Kjell Norén, Nils Holmström
  • Publication number: 20090149908
    Abstract: In an implantable biventricular heart stimulating device, and a biventricular heart stimulating method, wherein operation takes place normally with a time VV between a pacing pulse delivered, or inhibited, by a first ventricular pacing circuit and a pacing pulse delivered, or inhibited, by a second ventricular pacing circuit, and wherein a time VVcts is determined that is to be used instead of VV during a capture threshold search.
    Type: Application
    Filed: October 31, 2005
    Publication date: June 11, 2009
    Inventors: Anders Bjorling, Nils Holmstrom, Karin Jarverud
  • Patent number: 7546161
    Abstract: An exemplary method includes delivering biventricular pacing therapy using one or more timing parameters, detecting loss of capture, deciding if fusion exists without adjusting the one or more timing parameters and, based on the deciding, calling for fusion avoidance or calling for a capture threshold search. Various other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: June 9, 2009
    Assignee: Pacesetter, Inc.
    Inventors: Anders Bjorling, Xiaoyi Min, Richard Williamson, Karin Jarverud, Nils Holmstrom
  • Publication number: 20090118666
    Abstract: In a method for detecting a change of a condition of a patient using an implantable medical device being connectable to the patient in at least one electrode configuration, at least one impedance measurement session is initiated to obtain at least one impedance value corresponding to an impedance of whole blood of the patient. At least one relative or absolute value of an amount of hematocrit in the blood of the patient is calculated using the at least one impedance value. A present hematocrit level is determined dependent on the at least one hematocrit value, with a change of the condition being derived from the present hematocrit level of the patient.
    Type: Application
    Filed: February 28, 2006
    Publication date: May 7, 2009
    Inventors: Andreas Blomqvist, Malin Ohlander, Nils Holmstrom
  • Publication number: 20090099614
    Abstract: In a method and an apparatus for creating hemodynamic sensor signal templates using an implantable medical device connectable to a patient heart activity of the patient is sensed in order to identify a paste or sensed sequence of events of a heart cycle. Hemodynamic sensor signals for consecutive heart cycles are sensed and the sensed hemodynamic sensor signals for consecutive heart cycles are stored. The sensed sensor signals are classified dependent on at least one predetermined heart event sequence condition. A template may be created using the classified sensor signals.
    Type: Application
    Filed: February 28, 2006
    Publication date: April 16, 2009
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Nils Holmstrom, Malin Ohlander
  • Publication number: 20090076560
    Abstract: In a biventricular heart stimulator and a method for controlling such a biventricular heart stimulator, successive stimulation pulses are delivered to the ventricles of a heart such that stimulation pulses in a single heartbeat cycle are respectively first delivered to the first ventricle and then to the second ventricle. Capture or loss of capture in response to stimulation pulses delivered to one ventricle is detected. As a result of a detected loss of capture, preventative measures are taken for preventing loss of capture in the other ventricle.
    Type: Application
    Filed: March 2, 2005
    Publication date: March 19, 2009
    Inventors: Anders Bjorling, Nils Holmstrom
  • Publication number: 20090030470
    Abstract: An implantable heart stimulating device has a left ventricular coronary sinus electrode lead provided with a tip electrode, a right ventricular electrode lead provided with a ring electrode, and a pulse generator connected to the leads that applies stimulation pulses between the tip electrode and the ring electrode, with the tip electrode serving as the anode. A monitoring unit monitors for and detects anodal capture at the right ventricular ring electrode subsequent to a stimulation. If anodal capture is detected, either a threshold search is performed by varying the pulse width and/or pulse amplitude of stimulation pulses in order to identify stimulation pulse characteristics that avoid anodal capture at the ring electrode, or at least one further electrode is activated to function as an indifferent electrode together with the ring electrode, also in order to avoid anodal capture at the ring electrode.
    Type: Application
    Filed: January 26, 2006
    Publication date: January 29, 2009
    Inventors: Nils Holmstrom, Anders Bjorling
  • Publication number: 20080306566
    Abstract: A method for detecting a condition of a heart of a patient using an implantable medical device including the steps of sensing acoustic signals indicative of heart sounds of the heart of the patient; extracting signals corresponding to a first heart sound (S1) and a second heart sound (S2) from sensed signals; calculating an energy value corresponding to a signal corresponding to the first heart sound (S1) and an energy value corresponding to the second heart sound (S2); calculating a relation between the energy value corresponding to the first heart sound and the energy value corresponding to the second heart sound for successive cardiac cycles; and using at least one relation to detect the condition or a change of the condition. A medical device for determining the posture of a patient and a computer readable medium encoded with instructions are used to perform the inventive method.
    Type: Application
    Filed: December 16, 2005
    Publication date: December 11, 2008
    Inventors: Nils Holmstrom, Kjell Noren