Patents by Inventor NILS KÖPPER

NILS KÖPPER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11702729
    Abstract: A method for producing a steel strip containing, in addition to iron as the main component and unavoidable impurities, one or more of the following oxygen-affine elements in wt. %: Al: more than 0.02, Cr: more than 0.1, Mn: more than 1.3 or Si: more than 0.1, where the surface of the steel strip is cleaned, oxidation-treated and annealed. The treated and annealed steel strip is subsequently coated with a hot-dip coat. In order to be less cost-intensive and to achieve uniform, reproducible adhesion conditions for the coat, the steel strip is oxidation-treated prior to the annealing at temperatures below 200° C., where on the surface of the steel strip, with the formation of oxides with iron from the steel strip, an oxide layer is formed, which contains iron oxide and is reduction-treated during the course of the annealing under a reducing atmosphere to achieve a surface consisting substantially of metallic iron.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: July 18, 2023
    Assignee: SALZGITTER FLACHSTAHL GMBH
    Inventors: Marc Debeaux, Nils Köpper
  • Patent number: 11512364
    Abstract: The invention relates to a method for producing a hot-rolled strip composed of a bainitic multi-phase steel and having a Zn—Mg—Al coating, comprising the following steps: melting a steel melt containing (in weight percent): C: 0.04-0.11, Si: <=0.7, Mn: 1.4-2.2, Mo: 0.05-0.5, Al: 0.015-0.1, P: up to 0.02, S: up to 0.01, B: up to 0.006, and at least one element from the group Nb, V, Ti in accordance with the following condition: 0.02<=Nb+V+Ti<=0.20, the remainder being iron including unavoidable steel-accompanying elements resulting from the melting process, casting the steel melt into a preliminary material, in particular a slab or a block or a thin slab, hot rolling the preliminary material into a hot-rolled strip having a final rolling temperature in the range of 800 to 950° C., cooling the hot-rolled strip to a winding temperature less than 650° C., winding the hot-rolled strip at a winding temperature less than 650° C.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 29, 2022
    Assignee: Salzgitter Flachstahl GmbH
    Inventors: Ingwer Denks, Christian Pelz, Maik Habermann, Michael Braun, Stefan Mecke, Ansgar Geffert, Nils Köpper
  • Publication number: 20220220598
    Abstract: A cold-rolled or hot-rolled steel strip having a metal coating, the steel strip having iron as the main constituent and, in addition to carbon, an Mn content of 4.1 to 8.0 wt. % and optionally one or more of the alloy elements Al, Si, Cr, B, Ti, V, Nb and/or Mo. The surface of the uncoated steel strip is cleaned, a layer of pure iron is applied to the cleaned surface, an oxygen-containing iron-based layer is applied to the layer of pure iron and contains more than five mass percent oxygen. The steel strip is then annealed and, to attain a surface consisting substantially of metallic iron, is subjected to a reduction treatment in a reducing furnace while being annealed. The steel strip is then coated with the metallic coating by hot dipping. Uniform and reproducible adhesion conditions are hereby achieved for the metallic coating on the steel strip surface.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 14, 2022
    Inventors: Kai Köhler, Nils Köpper, Friedrich Luther, Marc Debeaux
  • Publication number: 20220170164
    Abstract: A cold- or hot-rolled steel strip with a metallic coating, the steel strip having iron as the main constituent and, in addition to carbon, an Mn content of 8.1 to 25.0 wt. % and optionally one or more of the alloying elements Al, Si, Cr, B, Ti, V, Nb and/or Mo. The uncoated steel strip is first cleaned, a layer of pure iron is applied to the cleaned surface, an oxygen-containing, iron-based layer containing more than five mass percent of oxygen is applied to the layer of pure iron. The steel strip is then annealed and is reduction-treated in a reducing furnace atmosphere during the annealing treatment to obtain a surface consisting mainly of metallic iron. The steel strip is then hot-dip coated with the metallic coating. This creates uniform and reproducible bonding conditions for the coating on the steel strip surface.
    Type: Application
    Filed: March 27, 2020
    Publication date: June 2, 2022
    Inventors: Kai Köhler, Nils Köpper, Friedrich Luther, Marc Debeaux
  • Publication number: 20210156018
    Abstract: A method for producing a steel strip containing, in addition to iron as the main component and unavoidable impurities, one or more of the following oxygen-affine elements in wt. %: Al: more than 0.02, Cr: more than 0.1, Mn: more than 1.3 or Si: more than 0.1, where the surface of the steel strip is cleaned, oxidation-treated and annealed. The treated and annealed steel strip is subsequently coated with a hot-dip coat. In order to be less cost-intensive and to achieve uniform, reproducible adhesion conditions for the coat, the steel strip is oxidation-treated prior to the annealing at temperatures below 200° C., where on the surface of the steel strip, with the formation of oxides with iron from the steel strip, an oxide layer is formed, which contains iron oxide and is reduction-treated during the course of the annealing under a reducing atmosphere to achieve a surface consisting substantially of metallic iron.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 27, 2021
    Inventors: Marc Debeaux, Nils Köpper
  • Publication number: 20200387685
    Abstract: The invention relates to a method for producing a hot-rolled strip composed of a bainitic multi-phase steel and having a Zn—Mg—Al coating, comprising the following steps: melting a steel melt containing (in weight percent): C: 0.04-0.11, Si: <=0.7, Mn: 1.4-2.2, Mo: 0.05-0.5, Al: 0.015-0.1, P: up to 0.02, S: up to 0.01, B: up to 0.006, and at least one element from the group Nb, V, Ti in accordance with the following condition: 0.02<=Nb+V+Ti<=0.20, the remainder being iron including unavoidable steel-accompanying elements resulting from the melting process, casting the steel melt into a preliminary material, in particular a slab or a block or a thin slab, hot rolling the preliminary material into a hot-rolled strip having a final rolling temperature in the range of 800 to 950° C., cooling the hot-rolled strip to a winding temperature less than 650° C., winding the hot-rolled strip at a winding temperature less than 650° C.
    Type: Application
    Filed: July 28, 2020
    Publication date: December 10, 2020
    Applicant: Salzgitter Flachstahl GmbH
    Inventors: Ingwer Denks, Christian Pelz, Maik Habermann, Michael Braun, Stefan Mecke, Ansgar Geffert, Nils Köpper
  • Publication number: 20180209011
    Abstract: The invention relates to a method for producing a hot-rolled strip composed of a bainitic multi-phase steel and having a Zn—Mg—Al coating, comprising the following steps: melting a steel melt containing (in weight percent): C: 0.04-0.11, Si: <=0.7, Mn: 1.4-2.2, Mo: 0.05-0.5, Al: 0.015-0.1, P: up to 0.02, S: up to 0.01, B: up to 0.006, and at least one element from the group Nb, V, Ti in accordance with the following condition: 0.02<=Nb+V+Ti<=0.20, the remainder being iron including unavoidable steel-accompanying elements resulting from the melting process, casting the steel melt into a preliminary material, in particular a slab or a block or a thin slab, hot rolling the preliminary material into a hot-rolled strip having a final rolling temperature in the range of 800 to 950° C., cooling the hot-rolled strip to a winding temperature less than 650° C., winding the hot-rolled strip at a winding temperature less than 650° C.
    Type: Application
    Filed: July 13, 2016
    Publication date: July 26, 2018
    Applicant: Salzgitter Flachstahl GmbH
    Inventors: INGWER DENKS, CHRISTIAN PELZ, MAIK HABERMANN, MICHAEL BRAUN, STEFAN MECKE, ANSGAR GEFFERT, NILS KÖPPER