Patents by Inventor Nina E. King

Nina E. King has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120283421
    Abstract: It has been determined that allergens, which are characterized by both humoral (IgE) and cellular (T-cell) binding sites, can be modified to be less allergenic by modifying the IgE binding sites. The IgE binding sites can be converted to non-IgE binding sites by altering as little as a single amino acid within the protein, preferably a hydrophobic residue towards the center of the IgE epitope, to eliminate IgE binding. Additionally or alternatively a modified allergen with reduced IgE binding may be prepared by disrupting one or more of the disulfide bonds that are present in the natural allergen. The disulfide bonds may be disrupted chemically, e.g., by reduction and alkylation or by mutating one or more cysteine residues present in the primary amino acid sequence of the natural allergen. In certain embodiments, modified allergens are prepared by both altering one or more linear IgE epitopes and disrupting one or more disulfide bonds of the natural allergen.
    Type: Application
    Filed: July 15, 2011
    Publication date: November 8, 2012
    Inventors: Michael J. Caplan, Howard B. Sosin, Hugh A. Sampson, Gary A. Bannon, A. Wesley Burks, JR., Gael Cockrell, Cesar M. Compadre, Cathie Connaughton, Ricki M. Helm, Nina E. King, Randall A. Kopper, Soheila J. Maleki, Patrick A. Rabjohn, David S. Shin, J. Steven Stanley
  • Patent number: 7879977
    Abstract: It has been determined that allergens, which are characterized by both humoral (IgE) and cellular (T cell) binding sites, can be modified to be less allergenic by modifying the IgE binding sites. The IgE binding sites can be converted to non-IgE binding sites by masking the site with a compound that prevents IgE binding or by altering as little as a single amino acid within the protein, most typically a hydrophobic residue towards the center of the IgE-binding epitope, to eliminate IgE binding. The method allows the protein to be altered as minimally as possible, other than-within the IgE-binding sites, while retaining the ability of the protein to activate T cells, and, in some embodiments by not significantly altering or decreasing IgG binding capacity The examples use peanut allergens to demonstrate alteration of IgE binding sites. The critical amino acids within each of the IgE binding epitopes of the peanut protein that are important to immunoglobulin binding have been determined.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: February 1, 2011
    Assignees: University of Arkansas, Mount Sinai School of Medicine of New York University
    Inventors: A. Wesley Burks, Jr., Gary A. Bannon, Hugh A. Sampson, Ricki M. Helm, Gael Cockrell, J. Steven Stanley, Nina E. King
  • Publication number: 20030202980
    Abstract: It has been determined that allergens, which are characterized by both humoral (IgE) and cellular (T-cell) binding sites, can be modified to be less allergenic by modifying the IgE binding sites. The IgE binding sites can be converted to non-IgE binding sites by altering as little as a single amino acid within the protein, preferably a hydrophobic residue towards the center of the IgE epitope, to eliminate IgE binding. Additionally or alternatively a modified allergen with reduced IgE binding may be prepared by disrupting one or more of the disulfide bonds that are present in the natural allergen. The disulfide bonds may be disrupted chemically, e.g., by reduction and alkylation or by mutating one or more cysteine residues present in the primary amino acid sequence of the natural allergen. In certain embodiments, modified allergens are prepared by both altering one or more linear IgE eitopes and disrupting one or more disulfide bonds of the natural allergen.
    Type: Application
    Filed: March 18, 2002
    Publication date: October 30, 2003
    Inventors: Michael J. Caplan, Howard B. Sosin, Hugh Sampson, Gary A. Bannon, A. Wesley Burks, Gael Cockrell, Cesar M. Compadre, Cathie Connaughton, Ricki M. Helm, Nina E. King, Randall A. Kopper, Soheila J. Maleki, Patrick A. Rabjohn, David S. Shin, J. Steven Stanley
  • Patent number: 6486311
    Abstract: Peanuts are a common cause of food hypersensitivity reactions. The sera of 10 patients who had atopic dermatitis and a positive double-blind placebo-controlled food challenge to peanut were used to investigate the major allergens of peanut. Crude Florunner extracts were fractionated by anion-exchange chromatography using a step gradient (limit buffer, 0.05M BisTris/1.5M NaCl). A protein peak (OD 280) which eluted at 10% NaCl and demonstrated intense IgE-binding was further analyzed by two-dimensional SDS-PAGE/immunoblot analysis. The majority of this fraction is a protein which has a molecular weight of 17 kD and a pI of 5.2. Sequencing data from the N-terminus revealed the following initial 9 amino acids: (*)-Q-Q-(*)-E-L-Q-D-L. Based on IgE-binding activity and no known amino acid sequence identity to other allergens, this allergen is designated Ara h II. Ara h II may be used to detect and quantify peanut allergens in foodstuffs.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: November 26, 2002
    Assignees: Mt. Sinai School of Medicine, University of Arkansas
    Inventors: A. Wesley Burks, Jr., J. Steven Stanley, Gael Cockrell, Nina E. King, Hugh A. Sampson, Ricki M. Helm, Gary A. Bannon