Patents by Inventor Nina Wobst

Nina Wobst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11371056
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 28, 2022
    Assignee: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Christina Thies, Manuel Dubald
  • Patent number: 11180770
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: November 23, 2021
    Assignee: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Christina Thies, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Manuel Dubald
  • Publication number: 20200239905
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 30, 2020
    Applicant: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Christina Thies, Manuel Dubald
  • Patent number: 10597674
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: March 24, 2020
    Assignee: BASF Agricultural Solutions Seed, US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Jan Tebbe, Wayne Coco, Michael Strerath, Ernst Weber, Nikolaus Pawlowski, Sandra Geske, Heike Balven-Ross, Nina Wobst, Christina Thies, Manuel Dubald
  • Publication number: 20200063155
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: March 1, 2018
    Publication date: February 27, 2020
    Applicant: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Christina Thies, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Manuel Dubald
  • Publication number: 20180208937
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: September 8, 2016
    Publication date: July 26, 2018
    Inventors: Marc Linka, Fabien POREE, Bernd LABER, Gudrun LANGE, Jan TEBBE, Wayne COCO, Michael STRERATH, Ernst WEBER, Nikolaus PAWLOWSKI, Sandra GESKE, Heike BALVEN-ROSS, Nina WOBST, Christina THIES, Manuel DUBALD
  • Patent number: 9309324
    Abstract: Isolated monoclonal antibodies that bind human tissue factor pathway inhibitor (TFPI) are provided. Isolated nucleic acid molecules encoding monoclonal antibodies that bind TFPI are also contemplated. Pharmaceutical compositions comprising the anti-TFPI monoclonal antibodies and methods of treating deficiencies or defects in coagulation by administration of the antibodies are also provided. Methods of producing the antibodies are also provided.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: April 12, 2016
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Zhuozhi Wang, Junliang Pan, Joanna Grudzinska, Christian Votsmeier, Jan Tebbe, Joerg Birkenfeld, Nina Wobst, Simone Brueckner, Susanne Steinig, Peter Scholz
  • Patent number: 8481030
    Abstract: Isolated monoclonal antibodies that bind human tissue factor pathway inhibitor (TFPI) are provided. Isolated nucleic acid molecules encoding monoclonal antibodies that bind TFPI are also contemplated. Pharmaceutical compositions comprising the anti-TFPI monoclonal antibodies and methods of treating deficiencies or defects in coagulation by administration of the antibodies are also provided. Methods of producing the antibodies are also provided.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: July 9, 2013
    Assignee: Bayer Healthcare LLC
    Inventors: Zhuozhi Wang, Junliang Pan, Joanna Grudzinska, Christian Votsmeier, Jan Tebbe, Joerg Birkenfeld, Nina Wobst, Simone Brueckner, Susanne Steinig, Peter Scholz
  • Publication number: 20120329996
    Abstract: Isolated monoclonal antibodies that bind human tissue factor pathway inhibitor (TFPI) are provided. Isolated nucleic acid molecules encoding monoclonal antibodies that bind TFPI are also contemplated. Pharmaceutical compositions comprising the anti-TFPI monoclonal antibodies and methods of treating deficiencies or defects in coagulation by administration of the antibodies are also provided. Methods of producing the antibodies are also provided.
    Type: Application
    Filed: March 1, 2011
    Publication date: December 27, 2012
    Inventors: Zhuozhi Wang, Junliang Pan, Joanna Grudzinska, Christian Votsmeier, Jan Tebbe, Joerg Birkenfeld, Nina Wobst, Simone Brueckner, Susanne Steinig, Peter Scholz
  • Publication number: 20120237496
    Abstract: The present invention relates to polypeptides comprising protease variants of wild type human neprilysin having an altered specificity and/or activity. In particular the present invention relates to polypeptides comprising protease variants derived from human neprilysin having an increased specificity and/or activity against certain substrates, in particular against amyloid beta.
    Type: Application
    Filed: June 21, 2010
    Publication date: September 20, 2012
    Inventors: Joerg Birkenfeld, Andrea Eicker, Per-Ola Freskgard, Claudia Gotzberger-Schad, Joanna Grudzinska, Ulrich Haupts, Josi Innig, Christoph Mahlert, Andreas Scheidig, Michael Strerath, Jan Tebbe, Johan Per-Wallin, Nina Wobst, Carl Innes Webster, Lutz Jermutus
  • Publication number: 20120108796
    Abstract: Isolated monoclonal antibodies that bind human tissue factor pathway inhibitor (TFPI) are provided. Isolated nucleic acid molecules encoding monoclonal antibodies that bind TFPI are also contemplated. Pharmaceutical compositions comprising the anti-TFPI monoclonal antibodies and methods of treating deficiencies or defects in coagulation by administration of the antibodies are also provided. Methods of producing the antibodies are also provided.
    Type: Application
    Filed: December 12, 2011
    Publication date: May 3, 2012
    Inventors: Zhuozhi WANG, Junliang Pan, Joanna Grudzinska, Christian Votsmeier, Jan Tebbe, Joerg Birkenfeld, Nina Wobst, Simone Brueckner, Susanne Steinig, Peter Scholz
  • Patent number: RE47150
    Abstract: Isolated monoclonal antibodies that bind human tissue factor pathway inhibitor (TFPI) are provided. Isolated nucleic acid molecules encoding monoclonal antibodies that bind TFPI are also contemplated. Pharmaceutical compositions comprising the anti-TFPI monoclonal antibodies and methods of treating deficiencies or defects in coagulation by administration of the antibodies are also provided. Methods of producing the antibodies are also provided.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: December 4, 2018
    Assignee: Bayer HealthCare LLC
    Inventors: Zhuozhi Wang, Junliang Pan, Joanna Grudzinska-Goebel, Christian Votsmeier, Jan Tebbe, Joerg Birkenfeld, Nina Wobst, Simone Brückner, Susanne Steinig, Peter Scholz