Patents by Inventor Ningfeng Huang

Ningfeng Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10942378
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: March 9, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Publication number: 20210055460
    Abstract: A pupil replication waveguide for a projector display includes a slab of transparent material for propagating display light in the slab via total internal reflection. A diffraction grating is supported by the slab. The diffraction grating includes a plurality of tapered slanted fringes in a substrate for out-coupling the display light from the slab by diffraction into a blazed diffraction order. A greater portion of the display light is out-coupled into the blazed diffraction order, and a smaller portion of the display light is out-coupled into a non-blazed diffraction order. The tapered fringes result in the duty cycle of the diffraction grating varying along the thickness direction of the diffraction grating, to facilitate suppressing the portion of the display light out-coupled into the non-blazed diffraction order.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Inventors: Hee Yoon Lee, Ningfeng Huang, Pasi Saarikko, Yu Shi, Giuseppe Calafiore, Nihar Ranjan Mohanty
  • Publication number: 20210055554
    Abstract: A waveguide display includes a waveguide transparent to visible light, a first volume Bragg grating (VBG) on the waveguide and characterized by a first refractive index modulation, and a second reflection VBG on the waveguide and including a plurality of regions characterized by different respective refractive index modulations. The first reflection VBG is configured to diffract display light in a first wavelength range and a first field of view (FOV) range such that the display light in the first wavelength range and the first FOV range propagates in the waveguide through total internal reflection to the plurality of regions of the second reflection VBG. The plurality of regions of the second reflection VBG are configured to diffract the display light in different respective wavelength ranges within the first wavelength range and the first FOV range.
    Type: Application
    Filed: April 3, 2020
    Publication date: February 25, 2021
    Inventors: Wanli Chi, Dominic Meiser, Yang Yang, Wai Sze Tiffany Lam, Pasi Saarikko, Ningfeng Huang
  • Patent number: 10911743
    Abstract: A display system is presented for displaying a color stereoscopic image comprising first and second images for user's left and right eyes respectively. A first display is configured for displaying first and second color channels of the first image to the left eye, such that a field of view of the first color channel of the first image is offset from a field of view of the second color channel of the first image in a first direction. A second display is configured for displaying first and second color channels of the second image to the right eye, such that a field of view of the first color channel of the second image is offset from a field of view of the second color channel of the second image in a second direction opposite to the first direction.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: February 2, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Ningfeng Huang, Hee Yoon Lee
  • Patent number: 10845526
    Abstract: A pupil replication waveguide for a projector display includes a slab of transparent material for propagating display light in the slab via total internal reflection. A diffraction grating is supported by the slab. The diffraction grating includes a plurality of slanted fringes in a substrate for out-coupling the display light from the slab by diffraction into a blazed diffraction order. A greater portion of the display light is out-coupled into the blazed diffraction order, and a smaller portion of the display light is out-coupled into a non-blazed diffraction order. A refractive index contrast profile of the diffraction grating along a thickness direction of the diffraction grating is symmetrical, and a refractive index contrast is larger at a middle than at both sides of the refractive index contrast profile, whereby the portion of the display light out-coupled into the non-blazed diffraction order is decreased.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: November 24, 2020
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Hee Yoon Lee, Ningfeng Huang, Pasi Saarikko, Yu Shi, Giuseppe Calafiore, Nihar Ranjan Mohanty
  • Patent number: 10845596
    Abstract: A waveguide display includes a substrate having two opposite surfaces, and a slanted grating at a first surface of the two opposite surfaces of the substrate. The slanted grating includes a plurality of ridges and is characterized by a grating period in one direction. The plurality of ridges is tilted at a slant angle with respect to a surface normal of the first surface and is characterized by a height. The height of the plurality of ridges, the grating period, and the slant angle are configured to cause destructive interference between ambient light diffracted by the slanted grating. In some embodiments, a difference between the height of the plurality of ridges and an integer multiple of the grating period divided by the tangent of the slant angle is less than a threshold value.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: November 24, 2020
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Hee Yoon Lee, Ningfeng Huang, Giuseppe Calafiore, Pasi Saarikko
  • Publication number: 20200292851
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Patent number: 10761330
    Abstract: A waveguide display includes a first substrate and one or more grating layers on a first surface of the first substrate. The one or more grating layers are configured to cause destructive interference between ambient light diffracted by at least two grating layers or between ambient light diffracted by different portions of one grating layer. In some embodiments, the waveguide display also includes an angular-selective transmissive layer. The angular-selective transmissive layer is configured to reflect, diffract, or absorb ambient light incident on the angular-selective reflective layer with an incidence angle greater than a threshold value.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: September 1, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Hee Yoon Lee, Ningfeng Huang, Eric Fest, Pasi Saarikko, Erik Shipton, Giuseppe Calafiore
  • Patent number: 10705353
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 7, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Publication number: 20200192130
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Publication number: 20200128229
    Abstract: A display system is presented for displaying a color stereoscopic image comprising first and second images for user's left and right eyes respectively. A first display is configured for displaying first and second color channels of the first image to the left eye, such that a field of view of the first color channel of the first image is offset from a field of view of the second color channel of the first image in a first direction. A second display is configured for displaying first and second color channels of the second image to the right eye, such that a field of view of the first color channel of the second image is offset from a field of view of the second color channel of the second image in a second direction opposite to the first direction.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 23, 2020
    Inventors: Ningfeng Huang, Hee Yoon Lee
  • Publication number: 20200116997
    Abstract: A waveguide display includes a display projector for emitting polychromatic image light, and a waveguide assembly for transmitting image light to an exit pupil. The waveguide assembly includes two or more waveguides disposed in a stack, each having an in-coupler aligned with the other in-couplers and an offset out-coupler aligned with the other out-couplers. The assembly is configured so that at least one color channel of the image light propagates to the exit pupil along at least two waveguides. A method for selecting the waveguides of the stack to suppress color channel splitting at the exit pupil is provided.
    Type: Application
    Filed: October 16, 2018
    Publication date: April 16, 2020
    Inventors: Hee Yoon Lee, Ningfeng Huang, Wai Sze Tiffany Lam, Pasi Saarikko
  • Publication number: 20200116996
    Abstract: A waveguide display includes a display projector for emitting polychromatic image light, and a waveguide assembly for transmitting image light to an exit pupil. The waveguide assembly includes two or more waveguides disposed in a stack, each having an in-coupler aligned with the other in-couplers and an offset out-coupler aligned with the other out-couplers. The assembly is configured so that at least one color channel of the image light propagates to the exit pupil along at least two waveguides. A method for selecting the waveguides of the stack to suppress color channel splitting at the exit pupil is provided.
    Type: Application
    Filed: October 16, 2018
    Publication date: April 16, 2020
    Inventors: Hee Yoon Lee, Ningfeng Huang, Wai Sze Tiffany Lam, Pasi Saarikko
  • Patent number: 10598938
    Abstract: An optical coupler for a waveguide-based display includes a slanted surface-relief grating that includes a plurality of regions. Different regions of the plurality of regions of the slanted surface-relief grating have different angular selectivity characteristics for incident display light. Display light for different viewing angles is diffracted by different regions of the slanted surface-relief grating.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: March 24, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Ningfeng Huang, Hee Yoon Lee
  • Patent number: 10578876
    Abstract: A waveguide is provided including first and second diffraction gratings and a phase-matching region conterminous with the first and second diffraction gratings and disposed in an optical path between the gratings. For an optical beam propagating along the optical path, the first grating adds a first phase shift to the optical beam reflecting from the first grating, the second grating adds a second phase shift to the optical beam reflecting from the second grating, and the phase-matching region adds a matching phase shift to the optical beam reflecting from the phase-matching region. The matching phase shift is between minimum and maximum values of the first and second phase shifts.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: March 3, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Wai Sze Tiffany Lam, Ningfeng Huang, Alexander Koshelev, Hee Yoon Lee, Austin Lane, Giuseppe Calafiore
  • Publication number: 20200057304
    Abstract: An artificial-reality display uses an anisotropic material to circularly-polarize light exiting a waveguide so that the artificial-reality display is relatively transparent.
    Type: Application
    Filed: December 10, 2018
    Publication date: February 20, 2020
    Inventors: Lu Lu, Wai Sze Tiffany Lam, Ningfeng Huang, Scott Charles McEldowney, Andrew John Ouderkirk, Barry David Silverstein
  • Patent number: 10545348
    Abstract: An artificial-reality display uses an anisotropic material to circularly-polarize light exiting a waveguide so that the artificial-reality display is relatively transparent.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: January 28, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Lu Lu, Wai Sze Tiffany Lam, Ningfeng Huang, Scott Charles McEldowney, Andrew John Ouderkirk, Barry David Silverstein
  • Patent number: 10529290
    Abstract: A display device includes a light source device, and a color converter optically coupled with the light source device. An array of regions of the light source device is configured to emit light of a first color. The color converter includes an array of color conversion regions including color conversion regions of a first type and of a second type. The color conversion regions of the first type are configured to convert the light of the first color into light of a second color. The color conversion regions of the second type are configured to convert the light of the first color into light of a third. A respective color conversion region of the array of color conversion regions includes a respective photonic crystal structure defining a respective two-dimensional pattern including one or more induced defects, and a color conversion matrix that includes color converting nanoparticles.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: January 7, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Maxwell Parsons, Chloe Astrid Marie Fabien, Ningfeng Huang, Gareth Valentine, James Ronald Bonar
  • Patent number: 10503007
    Abstract: A display device includes a light source device, and a color converter optically coupled with the light source device. An array of regions of the light source device is configured to emit light of a first color. The color converter includes an array of color conversion regions including color conversion regions of a first type and of a second type. The color conversion regions of the first type are configured to convert the light of the first color into light of a second color. The color conversion regions of the second type are configured to convert the light of the first color into light of a third. A respective color conversion region of the array of color conversion regions includes a respective photonic crystal structure defining a respective two-dimensional pattern. The respective color conversion region also includes a color conversion matrix that includes color converting nanoparticles.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: December 10, 2019
    Assignee: Facebook Technologies, LLC
    Inventors: Maxwell Parsons, Chloe Astrid Marie Fabien, Ningfeng Huang, Gareth Valentine, James Ronald Bonar
  • Publication number: 20190227321
    Abstract: A waveguide display includes a first substrate and one or more grating layers on a first surface of the first substrate. The one or more grating layers are configured to cause destructive interference between ambient light diffracted by at least two grating layers or between ambient light diffracted by different portions of one grating layer. In some embodiments, the waveguide display also includes an angular-selective transmissive layer. The angular-selective transmissive layer is configured to reflect, diffract, or absorb ambient light incident on the angular-selective reflective layer with an incidence angle greater than a threshold value.
    Type: Application
    Filed: December 4, 2018
    Publication date: July 25, 2019
    Inventors: Hee Yoon Lee, Ningfeng Huang, Eric Fest, Pasi Saarikko, Erik Shipton, Giuseppe Calafiore