Patents by Inventor Niousha Kazemi

Niousha Kazemi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200056025
    Abstract: A continuous solution polymerization process is disclosed wherein at least two catalyst formulations are employed. A first homogeneous catalyst formulation is employed in a first reactor to produce a first ethylene interpolymer and a first heterogeneous catalyst formulation is employed in a second reactor to produce a second ethylene interpolymer. Optionally a third ethylene interpolymer is formed in a third reactor. The resulting ethylene interpolymer products possess desirable properties in a variety of end use applications, for example in film applications. A means for increasing the molecular weight of the first ethylene interpolymer is disclosed and/or a means for increasing the temperature of the first reactor, relative to a third homogeneous catalyst formulation. A means for reducing the (?-olefin/ethylene) weight ratio in the first reactor is disclosed and/or reducing the density of the first ethylene interpolymer, relative to a third homogeneous catalyst formulation.
    Type: Application
    Filed: August 30, 2019
    Publication date: February 20, 2020
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Zengrong Zhang, Niousha Kazemi, Stephen Salomons, Monika Kleczek, Mehdi Keshtkar, Brian Molloy, Qinyan Wang, Peter Zoricak, Charles Carter, XiaoChuan Wang, Christopher Dobbin, Fazle Sibtain, Kenneth Taylor, Lawrence VanAsseldonk, Hamidreza Khakdaman
  • Publication number: 20200056024
    Abstract: A continuous solution polymerization process is disclosed wherein at least two homogeneous catalyst formulations are employed. A first homogeneous catalyst formulation is employed in a first reactor to produce a first ethylene interpolymer and a second homogeneous catalyst formulation is employed in a second reactor to produce a second ethylene interpolymer. Optionally a third ethylene interpolymer is formed in a third reactor. The resulting ethylene interpolymer products possess desirable properties in a variety of end use applications, for example in film applications. A means for increasing the molecular weight of the first ethylene interpolymer is disclosed and/or a means for increasing the temperature of the first reactor, relative to the third homogeneous catalyst formulation. A means for reducing the (?-olefin/ethylene) weight ratio in the first reactor is disclosed and/or reducing the density of the first ethylene interpolymer, relative to the third homogeneous catalyst formulation.
    Type: Application
    Filed: August 30, 2019
    Publication date: February 20, 2020
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Zengrong Zhang, Niousha Kazemi, Stephen Salomons, Monika Kleczek, Mehdi Keshtkar, Brian Molloy, Qinyan Wang, Peter Zoricak, Charles Carter, XiaoChuan Wang, Christopher Dobbin, Fazle Sibtain, Kenneth Taylor, Lawrence VanAsseldonk, Hamidreza Khakdaman
  • Patent number: 10538654
    Abstract: This disclosure relates to a continuous solution three reactor polymerization process. Process solvent, ethylene, optional comonomers, optional hydrogen and a single site catalyst system are injected into a first and second reactor configured in parallel to one another. A third reactor receives effluent from the first reactor, the second reactor, or a combination of the first and second reactors. Fresh monomer is feed to the third reactor for further polymerization and to give a final polyethylene product.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: January 21, 2020
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: XiaoChuan Wang, Niousha Kazemi, Stephen Brown, Lawrence VanAsseldonk, Stephen Salomons
  • Patent number: 10442921
    Abstract: A continuous solution polymerization process is disclosed wherein at least two homogeneous catalyst formulations are employed. A first homogeneous catalyst formulation is employed in a first reactor to produce a first ethylene interpolymer and a second homogeneous catalyst formulation is employed in a second reactor to produce a second ethylene interpolymer. Optionally a third ethylene interpolymer is formed in a third reactor. The resulting ethylene interpolymer products possess desirable properties in a variety of end use applications, for example in film applications. A means for increasing the molecular weight of the first ethylene interpolymer is disclosed and/or a means for increasing the temperature of the first reactor, relative to the third homogeneous catalyst formulation. A means for reducing the (?-olefin/ethylene) weight ratio in the first reactor is disclosed and/or reducing the density of the first ethylene interpolymer, relative to the third homogeneous catalyst formulation.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: October 15, 2019
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Zengrong Zhang, Niousha Kazemi, Stephen Salomons, Monika Kleczek, Mehdi Keshtkar, Brian Molloy, Qinyan Wang, Peter Zoricak, Charles Carter, XiaoChuan Wang, Christopher Dobbin, Fazle Sibtain, Kenneth Taylor, Lawrence VanAsseldonk, Hamidreza Khakdaman
  • Patent number: 10442920
    Abstract: A continuous solution polymerization process is disclosed wherein at least two catalyst formulations are employed. A first homogeneous catalyst formulation is employed in a first reactor to produce a first ethylene interpolymer and a first heterogeneous catalyst formulation is employed in a second reactor to produce a second ethylene interpolymer. Optionally a third ethylene interpolymer is formed in a third reactor. The resulting ethylene interpolymer products possess desirable properties in a variety of end use applications, for example in film applications. A means for increasing the molecular weight of the first ethylene interpolymer is disclosed and/or a means for increasing the temperature of the first reactor, relative to a third homogeneous catalyst formulation. A means for reducing the (?-olefin/ethylene) weight ratio in the first reactor is disclosed and/or reducing the density of the first ethylene interpolymer, relative to a third homogeneous catalyst formulation.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: October 15, 2019
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Zengrong Zhang, Niousha Kazemi, Stephen Salomons, Monika Kleczek, Mehdi Keshtkar, Brian Molloy, Qinyan Wang, Peter Zoricak, Charles Carter, XiaoChuan Wang, Christopher Dobbin, Fazle Sibtain, Kenneth Taylor, Lawrence VanAsseldonk, Hamidreza Khakdaman
  • Publication number: 20190135960
    Abstract: This disclosure relates to an improved solution polymerization process wherein the molecular weight of an ethylene interpolymer product can be increased relative to a comparative process; or at constant ethylene interpolymer molecular weight the improved process can be operated at higher polymerization temperature relative to the comparative process. This disclosure also relates to an improved solution polymerization process wherein an ethylene interpolymer product at target density can be produced at a lower [?-olefin/ethylene] weight ratio in the reactor, relative to a comparative process. Process solvent, ethylene, optional comonomers, optional hydrogen and a bridged metallocene catalyst formulation are injected into one or more reactors to form the ethylene interpolymer product. The catalyst is subsequently deactivated, the solution is optionally passivated and following a phase separation process the ethylene interpolymer product is recovered.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 9, 2019
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Niousha Kazemi, Monika Kleczek, Vinod Konaganti, Bronwyn Gillon, Shivendra Kumar Goyal, Fazle Sibtain, Sepideh Kasiri, Stephen Salomons, Kenneth Edward Taylor, Mehdi Keshtkar
  • Publication number: 20190135959
    Abstract: This disclosure relates to an improved continuous solution polymerization process wherein production rate is increased. Process solvent, ethylene, optional comonomers, optional hydrogen and a bridged metallocene catalyst formulation are injected into a first reactor to form a first ethylene interpolymer. Optionally, process solvent, ethylene, optional comonomers, optional hydrogen and a bridged metallocene catalyst formulation are injected into a second reactor forming a second ethylene interpolymer. The first and second reactors may be configured in series or parallel modes of operation. Optionally, a third ethylene interpolymer is formed in a third reactor, wherein a homogeneous catalyst formulation or a heterogeneous catalyst formulation is employed. In solution, the first, optional second and optional third ethylene interpolymers are combined, the catalyst is deactivated, the solution is optionally passivated and following a phase separation process an ethylene interpolymer product is recovered.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 9, 2019
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Niousha Kazemi, Monika Kleczek, Vinod Konaganti, Bronwyn Gillon, Shivendra Kumar Goyal, Fazle Sibtain, Sepideh Kasiri, Stephen Salomons, Kenneth Edward Taylor, Mehdi Keshtkar
  • Publication number: 20190135958
    Abstract: This disclosure relates to ethylene interpolymer compositions and films prepared therefrom. Specifically: ethylene interpolymer products having: a dimensionless Long Chain Branching Factor, LCBF, greater than or equal to 0.001; a residual catalytic metal of from ?0.03 to ?5 ppm of hafnium, and; a dimensionless unsaturation ratio, UR, of from ??0.40 to ?0.06, wherein UR is defined by the following relationship; UR=(SCU?TU)/TU, where SCU is the amount of a side chain unsaturation per 100 carbons and TU is amount of a terminal unsaturation per 100 carbons, in said ethylene interpolymer product. The disclosed ethylene interpolymer products have a melt index from about 0.3 to about 500 dg/minute, a density from about 0.855 to about 0.975 g/cc, a polydispersity (Mw/Mn) from about 1.7 to about 25 and a Composition Distribution Breadth Index (CDBI50) from about 1% to about 98%.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 9, 2019
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Niousha Kazemi, Monika Kleczek, Vinod Konaganti, Bronwyn Gillon, Shivendra Kumar Goyal, Fazle Sibtain, Sepideh Kasiri, Stephen Salomons, Kenneth Edward Taylor, Mehdi Keshtkar
  • Publication number: 20180305530
    Abstract: This disclosure relates to a continuous solution three reactor polymerization process. Process solvent, ethylene, optional comonomers, optional hydrogen and a single site catalyst system are injected into a first and second reactor configured in parallel to one another. A third reactor receives effluent from the first reactor, the second reactor, or a combination of the first and second reactors. Fresh monomer is feed to the third reactor for further polymerization and to give a final polyethylene product.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 25, 2018
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: XiaoChuan Wang, Niousha Kazemi, Stephen Brown, Lawrence VanAsseldonk, Stephen Salomons
  • Publication number: 20180305532
    Abstract: A continuous solution polymerization process is disclosed wherein at least two homogeneous catalyst formulations are employed. A first homogeneous catalyst formulation is employed in a first reactor to produce a first ethylene interpolymer and a second homogeneous catalyst formulation is employed in a second reactor to produce a second ethylene interpolymer. Optionally a third ethylene interpolymer is formed in a third reactor. The resulting ethylene interpolymer products possess desirable properties in a variety of end use applications, for example in film applications. A means for increasing the molecular weight of the first ethylene interpolymer is disclosed and/or a means for increasing the temperature of the first reactor, relative to the third homogeneous catalyst formulation. A means for reducing the (?-olefin/ethylene) weight ratio in the first reactor is disclosed and/or reducing the density of the first ethylene interpolymer, relative to the third homogeneous catalyst formulation.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 25, 2018
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Zengrong Zhang, Niousha Kazemi, Stephen Salomons, Monika Kleczek, Mehdi Keshtkar, Brian Molloy, Qinyan Wang, Peter Zoricak, Charles Carter, XiaoChuan Wang, Christopher Dobbin, Fazle Sibtain, Kenneth Taylor, Lawrence VanAsseldonk, Hamidreza Khakdaman
  • Publication number: 20180305531
    Abstract: A continuous solution polymerization process is disclosed wherein at least two catalyst formulations are employed. A first homogeneous catalyst formulation is employed in a first reactor to produce a first ethylene interpolymer and a first heterogeneous catalyst formulation is employed in a second reactor to produce a second ethylene interpolymer. Optionally a third ethylene interpolymer is formed in a third reactor. The resulting ethylene interpolymer products possess desirable properties in a variety of end use applications, for example in film applications. A means for increasing the molecular weight of the first ethylene interpolymer is disclosed and/or a means for increasing the temperature of the first reactor, relative to a third homogeneous catalyst formulation. A means for reducing the (?-olefin/ethylene) weight ratio in the first reactor is disclosed and/or reducing the density of the first ethylene interpolymer, relative to a third homogeneous catalyst formulation.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 25, 2018
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Zengrong Zhang, Niousha Kazemi, Stephen Salomons, Monika Kleczek, Mehdi Keshtkar, Brian Molloy, Qinyan Wang, Peter Zoricak, Charles Carter, XiaoChuan Wang, Christopher Dobbin, Fazle Sibtain, Kenneth Taylor, Lawrence VanAsseldonk, Hamidreza Khakdaman
  • Patent number: 9963529
    Abstract: This disclosure relates to a continuous solution three reactor polymerization process. Process solvent, ethylene, optional comonomers, optional hydrogen and a single site catalyst system are injected into a first and second reactor configured in parallel to one another. A third reactor receives effluent from the first reactor, the second reactor, or a combination of the first and second reactors. Fresh monomer is feed to the third reactor for further polymerization and to give a final polyethylene product.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: May 8, 2018
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Niousha Kazemi, Stephen Brown, Lawrence VanAsseldonk, XiaoChuan Wang, Stephen Salomons, Yves Lacombe