Patents by Inventor Nir Grossman
Nir Grossman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11759634Abstract: In illustrative implementations of this invention, interferential stimulation is precisely directed to arbitrary regions in a brain. The target region is not limited to the area immediately beneath the electrodes, but may be any superficial, mid-depth or deep brain structure. Targeting is achieved by positioning the region of maximum envelope amplitude so that it is located at the targeted tissue. Leakage between current channels is greatly reduced by making at least one of the current channels anti-phasic: that is, the electrode pair of at least one of the current channels has a phase difference between the two electrodes that is substantially equal to 180 degrees. Pairs of stimulating electrodes are positioned side-by-side, rather than in a conventional crisscross pattern, and thus produce only one region of maximum envelope amplitude. Typically, current sources are used to drive the interferential currents.Type: GrantFiled: January 1, 2021Date of Patent: September 19, 2023Assignee: Massachusetts Institute of TechnologyInventors: Nir Grossman, David Bono, Edward Boyden
-
Publication number: 20220331602Abstract: An apparatus for providing electrostimulation of a biological tissue, the apparatus comprising: a first electrical signal provider for providing a first alternating electric field in the biological tissue, the first alternating electric field having a first frequency; a second electrical signal provider for providing a second alternating electric field in the biological tissue the second alternating electric field having a second frequency; wherein the first alternating electric field and the second alternating electric field provide a combined field in the biological tissue, and the apparatus comprises a controller configured to provide variations of at least one of the first frequency and the second frequency so that the combined field provides a pulsed interferential stimulation signal.Type: ApplicationFiled: September 4, 2020Publication date: October 20, 2022Applicant: Imperial College Innovations LimitedInventors: Patrycja Dzialecka, Nir Grossman
-
Patent number: 11318278Abstract: A neuromodulator may output stimuli that causes a user to fall asleep faster than the user would in the absence of the stimuli. Alternatively, the stimuli may modify a sleep state or behavior associated with a sleep state, or may cause or hinder a transition from a waking state to a sleep state or from a sleep state to another sleep state. The neuromodulator may take electroencephalography measurements. Based on these measurements, the neuromodulator may detect, in real time, instantaneous amplitude and instantaneous phase of an endogenous brain signal. The neuromodulator may output stimulation that is, or that causes sensations which are, phase-locked with the endogenous brain signal. In the course of calculating instantaneous phase and amplitude, the neuromodulator may perform an endpoint-corrected Hilbert transform. The stimuli may comprise auditory, visual, electrical, magnetic, vibrotactile or haptic stimuli.Type: GrantFiled: December 22, 2018Date of Patent: May 3, 2022Assignees: Massachusetts Institute of Technology, Elemind Technologies, Inc.Inventors: Nir Grossman, David Wang, Edward Boyden
-
Patent number: 11166632Abstract: A neuromodulator accurately measures—in real time and over a range of frequencies—the instantaneous phase and amplitude of a natural signal. For example, the natural signal may be an electrical signal produced by neural tissue, or a motion such as a muscle tremor. The neuromodulator generates signals that are precisely timed relative to the phase of the natural signal. For example, the neuromodulator may generate an exogenous signal that is phase-locked with the natural signal. Or, for example, the neuromodulator may generate an exogenous signal that comprises short bursts which occur only during a narrow phase range of each period of an oscillating natural signal. The neuromodulator corrects distortions due to Gibbs phenomenon. In some cases, the neuromodulator does so by applying a causal filter to a discrete Fourier transform in the frequency domain, prior to taking an inverse discrete Fourier transform.Type: GrantFiled: July 30, 2020Date of Patent: November 9, 2021Assignees: Massachusetts Institute of Technology, Elemind Technologies, Inc.Inventors: Nir Grossman, David Wang, Edward Boyden
-
Publication number: 20210121693Abstract: In illustrative implementations of this invention, interferential stimulation is precisely directed to arbitrary regions in a brain. The target region is not limited to the area immediately beneath the electrodes, but may be any superficial, mid-depth or deep brain structure. Targeting is achieved by positioning the region of maximum envelope amplitude so that it is located at the targeted tissue. Leakage between current channels is greatly reduced by making at least one of the current channels anti-phasic: that is, the electrode pair of at least one of the current channels has a phase difference between the two electrodes that is substantially equal to 180 degrees. Pairs of stimulating electrodes are positioned side-by-side, rather than in a conventional crisscross pattern, and thus produce only one region of maximum envelope amplitude. Typically, current sources are used to drive the interferential currents.Type: ApplicationFiled: January 1, 2021Publication date: April 29, 2021Inventors: Nir Grossman, David Bono, Edward Boyden
-
Publication number: 20210059528Abstract: A neuromodulator accurately measures—in real time and over a range of frequencies—the instantaneous phase and amplitude of a natural signal. For example, the natural signal may be an electrical signal produced by neural tissue, or a motion such as a muscle tremor. The neuromodulator generates signals that are precisely timed relative to the phase of the natural signal. For example, the neuromodulator may generate an exogenous signal that is phase-locked with the natural signal. Or, for example, the neuromodulator may generate an exogenous signal that comprises short bursts which occur only during a narrow phase range of each period of an oscillating natural signal. The neuromodulator corrects distortions due to Gibbs phenomenon. In some cases, the neuromodulator does so by applying a causal filter to a discrete Fourier transform in the frequency domain, prior to taking an inverse discrete Fourier transform.Type: ApplicationFiled: July 30, 2020Publication date: March 4, 2021Inventors: Nir Grossman, David Wang, Edward Boyden
-
Patent number: 10905878Abstract: In illustrative implementations of this invention, interferential stimulation is precisely directed to arbitrary regions in a brain. The target region is not limited to the area immediately beneath the electrodes, but may be any superficial, mid-depth or deep brain structure. Targeting is achieved by positioning the region of maximum envelope amplitude so that it is located at the targeted tissue. Leakage between current channels is greatly reduced by making at least one of the current channels anti-phasic: that is, the electrode pair of at least one of the current channels has a phase difference between the two electrodes that is substantially equal to 180 degrees. Pairs of stimulating electrodes are positioned side-by-side, rather than in a conventional crisscross pattern, and thus produce only one region of maximum envelope amplitude. Typically, current sources are used to drive the interferential currents.Type: GrantFiled: December 17, 2018Date of Patent: February 2, 2021Assignee: Massachusetts Institute of TechnologyInventors: Nir Grossman, David Bono, Edward Boyden
-
Patent number: 10758175Abstract: A neuromodulator accurately measures—in real time and over a range of frequencies—the instantaneous phase and amplitude of a natural signal. For example, the natural signal may be an electrical signal produced by neural tissue, or a motion such as a muscle tremor. The neuromodulator generates signals that are precisely timed relative to the phase of the natural signal. For example, the neuromodulator may generate an exogenous signal that is phase-locked with the natural signal. Or, for example, the neuromodulator may generate an exogenous signal that comprises short bursts which occur only during a narrow phase range of each period of an oscillating natural signal. The neuromodulator corrects distortions due to Gibbs phenomenon. In some cases, the neuromodulator does so by applying a causal filter to a discrete Fourier transform in the frequency domain, prior to taking an inverse discrete Fourier transform.Type: GrantFiled: September 16, 2019Date of Patent: September 1, 2020Assignees: Massachusetts Institute of Technology, NuVu LLCInventors: Nir Grossman, David Wang, Edward Boyden
-
Publication number: 20200008743Abstract: A neuromodulator accurately measures—in real time and over a range of frequencies—the instantaneous phase and amplitude of a natural signal. For example, the natural signal may be an electrical signal produced by neural tissue, or a motion such as a muscle tremor. The neuromodulator generates signals that are precisely timed relative to the phase of the natural signal. For example, the neuromodulator may generate an exogenous signal that is phase-locked with the natural signal. Or, for example, the neuromodulator may generate an exogenous signal that comprises short bursts which occur only during a narrow phase range of each period of an oscillating natural signal. The neuromodulator corrects distortions due to Gibbs phenomenon. In some cases, the neuromodulator does so by applying a causal filter to a discrete Fourier transform in the frequency domain, prior to taking an inverse discrete Fourier transform.Type: ApplicationFiled: September 16, 2019Publication date: January 9, 2020Inventors: Nir Grossman, David Wang, Edward Boyden
-
Patent number: 10448883Abstract: A neuromodulator accurately measures—in real time and over a range of frequencies—the instantaneous phase and amplitude of a natural signal. For example, the natural signal may be an electrical signal produced by neural tissue, or a motion such as a muscle tremor. The neuromodulator generates signals that are precisely timed relative to the phase of the natural signal. For example, the neuromodulator may generate an exogenous signal that is phase-locked with the natural signal. Or, for example, the neuromodulator may generate an exogenous signal that comprises short bursts which occur only during a narrow phase range of each period of an oscillating natural signal. The neuromodulator corrects distortions due to Gibbs phenomenon. In some cases, the neuromodulator does so by applying a causal filter to a discrete Fourier transform in the frequency domain, prior to taking an inverse discrete Fourier transform.Type: GrantFiled: July 21, 2016Date of Patent: October 22, 2019Assignees: Massachusetts Institute of Technology, NuVu LLCInventors: Nir Grossman, David Wang, Edward Boyden
-
Publication number: 20190175372Abstract: An electronic intravascular device is placed in tight contact with vessel walls and is used for electrical stimulation and/or electrical recording of the vessel wall and surrounding target tissue. The electrodes may operate via connectors interfacing them to external hardware or may incorporate electronics to allow wireless power, information transfer, and control. The device includes an internal skeleton, a flexible substrate attached to the exterior of the skeleton, at least one pair of electrodes located on the substrate, and power and control circuitry connected to the electrodes. The power and control circuitry may include connectors for direct powering of the electrodes or circuit elements for wireless powering of the device by RF-based, optical-based, ultrasound-based, piezoelectric, or vibrational energy harvesting methods.Type: ApplicationFiled: July 23, 2018Publication date: June 13, 2019Applicants: Massachusetts Institute of Technology, Washington UniversityInventors: Edward Stuart Boyden, Giovanni Talei Franzesi, Christian Wentz, Nir Grossman, Elazer R. Edelman, Colin Derdeyn, Eric Leuthardt
-
Publication number: 20190143073Abstract: A neuromodulator may output stimuli that causes a user to fall asleep faster than the user would in the absence of the stimuli. Alternatively, the stimuli may modify a sleep state or behavior associated with a sleep state, or may cause or hinder a transition from a waking state to a sleep state or from a sleep state to another sleep state. The neuromodulator may take electroencephalography measurements. Based on these measurements, the neuromodulator may detect, in real time, instantaneous amplitude and instantaneous phase of an endogenous brain signal. The neuromodulator may output stimulation that is, or that causes sensations which are, phase-locked with the endogenous brain signal. In the course of calculating instantaneous phase and amplitude, the neuromodulator may perform an endpoint-corrected Hilbert transform. The stimuli may comprise auditory, visual, electrical, magnetic, vibrotactile or haptic stimuli.Type: ApplicationFiled: December 22, 2018Publication date: May 16, 2019Inventors: Nir Grossman, David Wang, Edward Boyden
-
Publication number: 20190117975Abstract: In illustrative implementations of this invention, interferential stimulation is precisely directed to arbitrary regions in a brain. The target region is not limited to the area immediately beneath the electrodes, but may be any superficial, mid-depth or deep brain structure. Targeting is achieved by positioning the region of maximum envelope amplitude so that it is located at the targeted tissue. Leakage between current channels is greatly reduced by making at least one of the current channels anti-phasic: that is, the electrode pair of at least one of the current channels has a phase difference between the two electrodes that is substantially equal to 180 degrees. Pairs of stimulating electrodes are positioned side-by-side, rather than in a conventional crisscross pattern, and thus produce only one region of maximum envelope amplitude. Typically, current sources are used to drive the interferential currents.Type: ApplicationFiled: December 17, 2018Publication date: April 25, 2019Inventors: Nir Grossman, David Bono, Edward Boyden
-
Patent number: 10173061Abstract: In illustrative implementations of this invention, interferential stimulation is precisely directed to arbitrary regions in a brain. The target region is not limited to the area immediately beneath the electrodes, but may be any superficial, mid-depth or deep brain structure. Targeting is achieved by positioning the region of maximum envelope amplitude so that it is located at the targeted tissue. Leakage between current channels is greatly reduced by making at least one of the current channels anti-phasic: that is, the electrode pair of at least one of the current channels has a phase difference between the two electrodes that is substantially equal to 180 degrees. Pairs of stimulating electrodes are positioned side-by-side, rather than in a conventional crisscross pattern, and thus produce only one region of maximum envelope amplitude. Typically, current sources are used to drive the interferential currents.Type: GrantFiled: October 8, 2015Date of Patent: January 8, 2019Assignee: Massachusetts Institute of TechnologyInventors: Nir Grossman, David Bono, Edward Boyden
-
Publication number: 20170216594Abstract: In illustrative implementations of this invention, interferential stimulation is precisely directed to arbitrary regions in a brain. The target region is not limited to the area immediately beneath the electrodes, but may be any superficial, mid-depth or deep brain structure. Targeting is achieved by positioning the region of maximum envelope amplitude so that it is located at the targeted tissue. Leakage between current channels is greatly reduced by making at least one of the current channels anti-phasic: that is, the electrode pair of at least one of the current channels has a phase difference between the two electrodes that is substantially equal to 180 degrees. Pairs of stimulating electrodes are positioned side-by-side, rather than in a conventional crisscross pattern, and thus produce only one region of maximum envelope amplitude. Typically, current sources are used to drive the interferential currents.Type: ApplicationFiled: October 8, 2015Publication date: August 3, 2017Inventors: Nir Grossman, David Bono, Edward Boyden
-
Publication number: 20170020447Abstract: A neuromodulator accurately measures—in real time and over a range of frequencies—the instantaneous phase and amplitude of a natural signal. For example, the natural signal may be an electrical signal produced by neural tissue, or a motion such as a muscle tremor. The neuromodulator generates signals that are precisely timed relative to the phase of the natural signal. For example, the neuromodulator may generate an exogenous signal that is phase-locked with the natural signal. Or, for example, the neuromodulator may generate an exogenous signal that comprises short bursts which occur only during a narrow phase range of each period of an oscillating natural signal. The neuromodulator corrects distortions due to Gibbs phenomenon. In some cases, the neuromodulator does so by applying a causal filter to a discrete Fourier transform in the frequency domain, prior to taking an inverse discrete Fourier transform.Type: ApplicationFiled: July 21, 2016Publication date: January 26, 2017Inventors: Nir Grossman, David Wang, Edward Boyden
-
Publication number: 20160000590Abstract: An electronic intravascular device is placed in tight contact with vessel walls and is used for electrical stimulation and/or electrical recording of the vessel wall and surrounding target tissue. The electrodes may operate via connectors interfacing them to external hardware or may incorporate electronics to allow wireless power, information transfer, and control. The device includes an internal skeleton, a flexible substrate attached to the exterior of the skeleton, at least one pair of electrodes located on the substrate, and power and control circuitry connected to the electrodes. The power and control circuitry may include connectors for direct powering of the electrodes or circuit elements for wireless powering of the device by RF-based, optical-based, ultrasound-based, piezoelectric, or vibrational energy harvesting methods.Type: ApplicationFiled: April 7, 2015Publication date: January 7, 2016Applicants: Washington University, Massachusetts Institute of TechnologyInventors: Edward Stuart Boyden, Giovanni Talei Franzesi, Christian Wentz, Nir Grossman, Elazer R. Edelman, Colin Derdeyn, Eric Leuthardt
-
Publication number: 20110127405Abstract: This invention describes a device for optical stimulation of cells and other biological structures. It has an ability to target multiple cells and/or multiple sub-cellular targets. The stimulation optical pattern on each cell can be independently controlled with individual frequencies. The light sensitivity of the cells can be imparted as a result of genetic expression of surface and/or subsurface proteins, chemical modification of existing proteins, or via the release of caged entities which in turn act to stimulate the cell through chemical means. The embodiment is capable of functioning on neurons but can also be used for other cells. It can perform optimal stimulation with sub-cellular resolutions, record the activity of the targeted cells and perform processing to ensure calibration.Type: ApplicationFiled: May 18, 2009Publication date: June 2, 2011Inventors: Nir Grossman, Patrick Degenaar, Konstantin Nikolic, Mark Neil, Gordon Kennedy, Vincent Poher