Patents by Inventor Niraj Rana

Niraj Rana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230369091
    Abstract: A substrate support configured to support a substrate having a diameter D comprises a first inner electrode and a second inner electrode that are each D-shaped, define a first outer diameter that is less than D, and are configured to be connected to an electrostatic chuck voltage to clamp the substrate to the substrate support. An outer electrode comprises a ring-shaped outer portion that surrounds the first inner electrode and the second inner electrode and a center portion that pass between the first inner electrode and the second inner electrode to connect to opposite sides of an inner diameter of the ring-shaped outer portion. The inner diameter of the ring-shaped outer portion is greater than the diameter D such that the inner diameter of the ring-shaped outer portion and intersections between the center portion and the ring-shaped outer portion are located radially outside of the diameter D of the substrate.
    Type: Application
    Filed: September 28, 2021
    Publication date: November 16, 2023
    Inventors: Feng BI, Yukinori SAKIYAMA, Niraj RANA, Pengyi ZHANG, Simran SHAH, Timothy Scott THOMAS, David FRENCH, Vincent BURKHART
  • Publication number: 20220406578
    Abstract: An apparatus to determine occurrence of an anomalous plasma event occurring at or near a process station of a multi-station integrated circuit fabrication chamber is disclosed. In particular embodiments, optical emissions generated responsive to the anomalous plasma event may be detected by at least one photosensor of a plurality of photosensors. A processor may cooperate with the plurality of photosensors to determine that the anomalous plasma event has occurred at or near by a particular process station of the multi-station integrated circuit fabrication chamber.
    Type: Application
    Filed: November 18, 2020
    Publication date: December 22, 2022
    Inventors: Yukinori Sakiyama, Niraj Rana, Noah Elliot Baker
  • Patent number: 10903070
    Abstract: Methods for reducing warpage of bowed semiconductor substrates, particularly saddle-shaped bowed semiconductor substrates, are provided herein. Methods involve depositing a bow compensation layer by plasma enhanced chemical vapor deposition on the backside of the bowed semiconductor substrate by region, such as by quadrants, to form a compressive film on a tensile substrate and a tensile film on a compressive substrate. Methods involve flowing different gases from different nozzles on a surface of a showerhead to deliver various gases by region in a one-step operation or flowing gases in a multi-step process by shielding regions of the showerhead during delivery of gases to deliver specific gases from non-shielded regions onto regions of the bowed semiconductor substrate by alternating between rotating the semiconductor substrate and flowing gases to the backside of the bowed semiconductor substrate.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 26, 2021
    Assignee: Lam Research Corporation
    Inventors: Chanyuan Liu, Fayaz A. Shaikh, Niraj Rana, Nick Ray Linebarger, Jr.
  • Publication number: 20200105523
    Abstract: Methods for reducing warpage of bowed semiconductor substrates, particularly saddle-shaped bowed semiconductor substrates, are provided herein. Methods involve depositing a bow compensation layer by plasma enhanced chemical vapor deposition on the backside of the bowed semiconductor substrate by region, such as by quadrants, to form a compressive film on a tensile substrate and a tensile film on a compressive substrate. Methods involve flowing different gases from different nozzles on a surface of a showerhead to deliver various gases by region in a one-step operation or flowing gases in a multi-step process by shielding regions of the showerhead during delivery of gases to deliver specific gases from non-shielded regions onto regions of the bowed semiconductor substrate by alternating between rotating the semiconductor substrate and flowing gases to the backside of the bowed semiconductor substrate.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Chanyuan Liu, Fayaz A. Shaikh, Niraj Rana, Nick Ray Linebarger, JR.
  • Patent number: 8709846
    Abstract: Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state light device includes a light emitting diode with an N-type gallium nitride (GaN) material, a P-type GaN material spaced apart from the N-type GaN material, and an indium gallium nitride (InGaN) material directly between the N-type GaN material and the P-type GaN material. At least one of the N-type GaN, InGaN, and P-type GaN materials has a non-planar surface.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: April 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Niraj Rana, Zaiyuan Ren
  • Publication number: 20130288416
    Abstract: Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state light device includes a light emitting diode with an N-type gallium nitride (GaN) material, a P-type GaN material spaced apart from the N-type GaN material, and an indium gallium nitride (InGaN) material directly between the N-type GaN material and the P-type GaN material. At least one of the N-type GaN, InGaN, and P-type GaN materials has a non-planar surface.
    Type: Application
    Filed: June 26, 2013
    Publication date: October 31, 2013
    Inventors: Niraj Rana, Zaiyuan Ren
  • Patent number: 8546016
    Abstract: A method for cleaning a semiconductor structure includes subjecting a semiconductor structure to an aqueous solution including at least one fluorine compound, and at least one strong acid, the aqueous solution having a pH of less than 1. In one embodiment, the aqueous solution includes water, hydrochloric acid, and hydrofluoric acid at a volumetric ratio of water to hydrochloric acid to hydrofluoric acid of 1000:32.5:1. The aqueous solution may be used to form a contact plug that has better contact resistance and improved critical dimension bias than conventional cleaning solutions.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: October 1, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanjeev Sapra, Niraj Rana
  • Patent number: 8513086
    Abstract: Methods for selectively etching doped oxides in the manufacture of microfeature devices are disclosed herein. An embodiment of one such method for etching material on a microfeature workpiece includes providing a microfeature workpiece including a doped oxide layer and a nitride layer adjacent to the doped oxide layer. The method include selectively etching the doped oxide layer with an etchant comprising DI:HF and an acid to provide a pH of the etchant such that the etchant includes (a) a selectivity of phosphosilicate glass (PSG) to nitride of greater than 250:1, and (b) an etch rate through PSG of greater than 9,000 ?/minute.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Niraj Rana
  • Patent number: 8512587
    Abstract: Etch solutions for selectively etching doped oxide materials in the presence of silicon nitride, titanium nitride, and silicon materials, and methods utilizing the etch solutions, for example, in construction of container capacitor constructions are provided. The etch solutions are formulated as a mixture of hydrofluoric acid and an organic acid having a dielectric constant less than water, optionally, with an inorganic acid, and a pH of 1 or less.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Niraj Rana, Prashant Raghu, Kevin Torek
  • Patent number: 8476640
    Abstract: Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state light device includes a light emitting diode with an N-type gallium nitride (GaN) material, a P-type GaN material spaced apart from the N-type GaN material, and an indium gallium nitride (InGaN) material directly between the N-type GaN material and the P-type GaN material. At least one of the N-type GaN, InGaN, and P-type GaN materials has a non-planar surface.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: July 2, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Niraj Rana, Zaiyuan Ren
  • Publication number: 20120276748
    Abstract: Methods for selectively etching doped oxides in the manufacture of microfeature devices are disclosed herein. An embodiment of one such method for etching material on a microfeature workpiece includes providing a microfeature workpiece including a doped oxide layer and a nitride layer adjacent to the doped oxide layer. The method include selectively etching the doped oxide layer with an etchant comprising DI:HF and an acid to provide a pH of the etchant such that the etchant includes (a) a selectivity of phosphosilicate glass (PSG) to nitride of greater than 250:1, and (b) an etch rate through PSG of greater than 9,000 ?/minute.
    Type: Application
    Filed: July 2, 2012
    Publication date: November 1, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Niraj Rana
  • Publication number: 20120178257
    Abstract: A method for cleaning a semiconductor structure includes subjecting a semiconductor structure to an aqueous solution including at least one fluorine compound, and at least one strong acid, the aqueous solution having a pH of less than 1. In one embodiment, the aqueous solution includes water, hydrochloric acid, and hydrofluoric acid at a volumetric ratio of water to hydrochloric acid to hydrofluoric acid of 1000:32.5:1. The aqueous solution may be used to form a contact plug that has better contact resistance and improved critical dimension bias than conventional cleaning solutions.
    Type: Application
    Filed: January 7, 2011
    Publication date: July 12, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanjeev Sapra, Niraj Rana
  • Patent number: 8216911
    Abstract: Methods for selectively etching doped oxides in the manufacture of microfeature devices are disclosed herein. An embodiment of one such method for etching material on a microfeature workpiece includes providing a microfeature workpiece including a doped oxide layer and a nitride layer adjacent to the doped oxide layer. The method include selectively etching the doped oxide layer with an etchant comprising DI:HF and an acid to provide a pH of the etchant such that the etchant includes (a) a selectivity of phosphosilicate glass (PSG) to nitride of greater than 250:1, and (b) an etch rate through PSG of greater than 9,000 ?/minute.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: July 10, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Niraj Rana
  • Publication number: 20120161151
    Abstract: Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state light device includes a light emitting diode with an N-type gallium nitride (GaN) material, a P-type GaN material spaced apart from the N-type GaN material, and an indium gallium nitride (InGaN) material directly between the N-type GaN material and the P-type GaN material. At least one of the N-type GaN, InGaN, and P-type GaN materials has a non-planar surface.
    Type: Application
    Filed: March 5, 2012
    Publication date: June 28, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Niraj Rana, Zaiyuan Ren
  • Patent number: 8129205
    Abstract: Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state light device includes a light emitting diode with an N-type gallium nitride (GaN) material, a P-type GaN material spaced apart from the N-type GaN material, and an indium gallium nitride (InGaN) material directly between the N-type GaN material and the P-type GaN material. At least one of the N-type GaN, InGaN, and P-type GaN materials has a non-planar surface.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: March 6, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Niraj Rana, Zaiyuan Ren
  • Publication number: 20110180828
    Abstract: Solid state lighting devices and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state light device includes a light emitting diode with an N-type gallium nitride (GaN) material, a P-type GaN material spaced apart from the N-type GaN material, and an indium gallium nitride (InGaN) material directly between the N-type GaN material and the P-type GaN material. At least one of the N-type GaN, InGaN, and P-type GaN materials has a non-planar surface.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Niraj Rana, Zaiyuan Ren
  • Publication number: 20110143543
    Abstract: Some embodiments include methods of forming capacitors. Storage nodes are formed within a material. The storage nodes have sidewalls along the material. Some of the material is removed to expose portions of the sidewalls. The exposed portions of the sidewalls are coated with a substance that isn't wetted by water. Additional material is removed to expose uncoated regions of the sidewalls. The substance is removed, and then capacitor dielectric material is formed along the sidewalls of the storage nodes. Capacitor electrode material is then formed over the capacitor dielectric material. Some embodiments include methods of utilizing a silicon dioxide-containing masking structure in which the silicon dioxide of the masking structure is coated with a substance that isn't wetted by water.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 16, 2011
    Applicant: Micro Technology Inc.
    Inventors: NIRAJ RANA, Nishant Sinha, Prashant Raghu, Jim Hofmann, Neil Greeley
  • Publication number: 20110111597
    Abstract: Some embodiments include methods of forming capacitors. Storage nodes are formed within a material. The storage nodes have sidewalls along the material. Some of the material is removed to expose portions of the sidewalls. The exposed portions of the sidewalls are coated with a substance that isn't wetted by water. Additional material is removed to expose uncoated regions of the sidewalls. The substance is removed, and then capacitor dielectric material is formed along the sidewalls of the storage nodes. Capacitor electrode material is then formed over the capacitor dielectric material. Some embodiments include methods of utilizing a silicon dioxide-containing masking structure in which the silicon dioxide of the masking structure is coated with a substance that isn't wetted by water.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 12, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Niraj Rana, Nishant Sinha, Prashant Raghu, Jim Hofmann, Neil Greeley
  • Patent number: 7902081
    Abstract: A method of etching polysilicon includes exposing a substrate comprising polysilicon to a solution comprising water, HF, and at least one of a conductive metal nitride, Pt, and Au under conditions effective to etch polysilicon from the substrate. In one embodiment, a substrate first region comprising polysilicon and a substrate second region comprising at least one of a conductive metal nitride, Pt, and Au is exposed to a solution comprising water and HF. The solution is devoid of any detectable conductive metal nitride, Pt, and Au prior to the exposing. At least some of the at least one are etched into the solution upon the exposing. Then, polysilicon is etched from the first region at a faster rate than any etch rate of the first region polysilicon prior to the etching of the at least some of the conductive metal nitride, Pt, and Au.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: March 8, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Prashant Raghu, Vishwanath Bhat, Niraj Rana
  • Patent number: 7892937
    Abstract: Some embodiments include methods of forming capacitors. Storage nodes are formed within a material. The storage nodes have sidewalls along the material. Some of the material is removed to expose portions of the sidewalls. The exposed portions of the sidewalls are coated with a substance that isn't wetted by water. Additional material is removed to expose uncoated regions of the sidewalls. The substance is removed, and then capacitor dielectric material is formed along the sidewalls of the storage nodes. Capacitor electrode material is then formed over the capacitor dielectric material. Some embodiments include methods of utilizing a silicon dioxide-containing masking structure in which the silicon dioxide of the masking structure is coated with a substance that isn't wetted by water.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: February 22, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Niraj Rana, Nishant Sinha, Prashant Raghu, Jim Hofmann, Neil Greeley