Patents by Inventor Nirmalkumar G. Patel

Nirmalkumar G. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10823690
    Abstract: A sensor for sensing gaseous chemicals includes a substrate, a variable resistance nanocrystalline ITO thin film formed on the substrate, and electrodes electrically coupled to the thin film. A sensor array assembly includes a sensor slide and a perforated interface circuit. The interface circuit abuts and electrically couples the sensor slide. The sensor slide includes several spaced apart ITO film strips formed on a slide substrate. A common electrode is electrically coupled to a common portion of each ITO film strip providing an electrically conductive path across the common portions of each of the plurality of spaced apart ITO film strips. A discrete electrode is electrically coupled to a discrete portion of each ITO film strip. The interface circuit is configured to abut and electrically couple to the sensor slide. A conductive discrete electrode pad electrically couples each of the plurality of discrete electrodes of the sensor slide to discrete terminals on the interface circuit.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: November 3, 2020
    Assignee: The University of North Florida Board of Trustees
    Inventor: Nirmalkumar G. Patel
  • Publication number: 20170153199
    Abstract: A sensor for sensing gaseous chemicals includes a substrate, a variable resistance nanocrystalline ITO thin film formed on the substrate, and electrodes electrically coupled to the thin film. A sensor array assembly includes a sensor slide and a perforated interface circuit. The interface circuit abuts and electrically couples the sensor slide. The sensor slide includes several spaced apart ITO film strips formed on a slide substrate. A common electrode is electrically coupled to a common portion of each ITO film strip providing an electrically conductive path across the common portions of each of the plurality of spaced apart ITO film strips. A discrete electrode is electrically coupled to a discrete portion of each ITO film strip. The interface circuit is configured to abut and electrically couple to the sensor slide. A conductive discrete electrode pad electrically couples each of the plurality of discrete electrodes of the sensor slide to discrete terminals on the interface circuit.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 1, 2017
    Applicant: University of North Florida Board of Trustees
    Inventor: Nirmalkumar G. Patel
  • Patent number: 9606078
    Abstract: A sensor for sensing gaseous chemicals includes a substrate, a variable resistance nanocrystalline ITO thin film formed on the substrate, and electrodes electrically coupled to the thin film. A sensor array assembly includes a sensor slide and a perforated interface circuit. The interface circuit abuts and electrically couples the sensor slide. The sensor slide includes several spaced apart ITO film strips formed on a slide substrate. A common electrode is electrically coupled to a common portion of each ITO film strip providing an electrically conductive path across the common portions of each of the plurality of spaced apart ITO film strips. A discrete electrode is electrically coupled to a discrete portion of each ITO film strip. The interface circuit is configured to abut and electrically couple to the sensor slide. A conductive discrete electrode pad electrically couples each of the plurality of discrete electrodes of the sensor slide to discrete terminals on the interface circuit.
    Type: Grant
    Filed: November 11, 2007
    Date of Patent: March 28, 2017
    Assignee: University of North Florida Board of Trustees
    Inventor: Nirmalkumar G. Patel
  • Patent number: 7930923
    Abstract: A nanocrystalline ITO thin film formed on a quartz crystal microbalance (QCM) facilitates detection of gaseous compounds emitted from an analyte. Adsorption of gas molecules onto the nanocrystalline ITO thin film changes the resonant frequency of the quartz crystal. Parameters such as the frequency of oscillation, surface resistance, integrated frequency response, integrated surface resistance response, initial response slope, average return to baseline slope, and/or return to baseline time/initial response time ratio of the quartz crystal with the nanocrystalline ITO thin film formed thereon are determined. Using the determined parameters and principal component analysis, principal components for the gaseous compounds are also determined. These determined principal components may be compared with known principal components corresponding to known analytes.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: April 26, 2011
    Assignee: The University of North Florida Board of Trustees
    Inventors: Nirmalkumar G. Patel, Jay S. Huebner, Brian E. Stadelmaier, Jason J. Saredy
  • Publication number: 20100279425
    Abstract: A sensor for sensing gaseous chemicals includes a substrate, a variable resistance nanocrystalline ITO thin film formed on the substrate, and electrodes electrically coupled to the thin film. A sensor array assembly includes a sensor slide and a perforated interface circuit. The interface circuit abuts and electrically couples the sensor slide. The sensor slide includes several spaced apart ITO film strips formed on a slide substrate. A common electrode is electrically coupled to a common portion of each ITO film strip providing an electrically conductive path across the common portions of each of the plurality of spaced apart ITO film strips. A discrete electrode is electrically coupled to a discrete portion of each ITO film strip. The interface circuit is configured to abut and electrically couple to the sensor slide. A conductive discrete electrode pad electrically couples each of the plurality of discrete electrodes of the sensor slide to discrete terminals on the interface circuit.
    Type: Application
    Filed: November 11, 2007
    Publication date: November 4, 2010
    Applicant: THE UNIVERSITY OF NORTH FLORIDA BOARD OF TRUSTEES
    Inventor: Nirmalkumar G. Patel
  • Publication number: 20100251802
    Abstract: A nanocrystalline ITO thin film formed on a quartz crystal microbalance (QCM) facilitates detection of gaseous compounds emitted from an analyte. Adsorption of gas molecules onto the nanocrystalline ITO thin film changes the resonant frequency of the quartz crystal. Parameters such as the frequency of oscillation, surface resistance, integrated frequency response, integrated surface resistance response, initial response slope, average return to baseline slope, and/or return to baseline time/initial response time ratio of the quartz crystal with the nanocrystalline ITO thin film formed thereon are determined. Using the determined parameters and principal component analysis, principal components for the gaseous compounds are also determined. These determined principal components may be compared with known principal components corresponding to known analytes.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 7, 2010
    Applicant: THE UNIVERSITY OF NORTH FLORIDA BOARD OF TRUSTEES
    Inventors: Nirmalkumar G. Patel, Jay S. Huebner, Brian E. Stadelmaier, Jason J. Saredy