Patents by Inventor NISHAT ARSHI

NISHAT ARSHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240322110
    Abstract: A method of synthesizing a flexible and binder-free electrode material for lithium-ion batteries using multi-walled carbon nanotubes (MWCNTs) on copper (Cu) foil directly. The growth of MWCNTs is carried out by plasma-enhanced chemical vapor deposition (PECVD) using a sputter-coated chromium (Cr) barrier layer and a nickel (Ni) catalyst on Cu foil. The resultant electrode material can be used as a binder-free and flexible anode for lithium-ion batteries.
    Type: Application
    Filed: July 19, 2023
    Publication date: September 26, 2024
    Inventors: FAHEEM AHMED, NISHAT ARSHI, SHALENDRA KUMAR, NAGIH MOHAMMED SHAALAN, GHAZZAI ALMUTAIRI, P.M.Z. HASAN, THAMRAA ALSHAHRANI
  • Publication number: 20240322109
    Abstract: A method of synthesizing a flexible and binder-free electrode material for lithium-ion batteries using multi-walled carbon nanotubes (MWCNTs) on copper (Cu) foil directly. The growth of MWCNTs is carried out by plasma-enhanced chemical vapor deposition (PECVD) using a sputter-coated chromium (Cr) barrier layer and a nickel (Ni) catalyst on Cu foil. The resultant electrode material can be used as a binder-free and flexible anode for lithium-ion batteries.
    Type: Application
    Filed: March 21, 2023
    Publication date: September 26, 2024
    Inventors: FAHEEM AHMED, NISHAT ARSHI, SHALENDRA KUMAR, NAGIH MOHAMMED SHAALAN, GHAZZAI ALMUTAIRI, P.M.Z. HASAN, THAMRAA ALSHAHRANI
  • Publication number: 20240270594
    Abstract: The method for synthesizing zinc oxide nanoroses is a green, fast, and cost-effective approach for the growth of ZnO nanoroses in which a sheet of vertically aligned and interconnected sheet of ZnO nanospheres are grown on a titanium buffer layer coated on a silicon substrate, the nanospheres mimicking a rose-like structure. According to the method, a film of titanium is first deposited on a Si/SiO2 substrate by an e-beam evaporation method. Then, the titanium film coated substrate is suspended upside down in a solution of zinc nitrate (0.011 M-0.055M) in an aqueous solution of hexamethylenetetramine (0.011 M-0.055M) and heated to 50-100° C. with vigorous stirring for 60-180 min. The resulting ZnO nanoroses are washed with de-ionized water and air-dried for 12-24 hours. The ZnO nanoroses are suitable for use for various device applications in electronics and in biomedical systems.
    Type: Application
    Filed: July 5, 2023
    Publication date: August 15, 2024
    Inventors: FAHEEM AHMED, NISHAT ARSHI, SHALENDRA KUMAR, NAGIH MOHAMMED SHAALAN, GHAZZAI ALMUTAIRI, BANDAR ALOTAIBI, THAMRAA ALSHAHRANI, P.M.Z. HASAN
  • Publication number: 20240270593
    Abstract: The method for synthesizing zinc oxide nanoroses is a green, fast, and cost-effective approach for the growth of ZnO nanoroses in which a sheet of vertically aligned and interconnected sheet of ZnO nanospheres are grown on a titanium buffer layer coated on a silicon substrate, the nanospheres mimicking a rose-like structure. According to the method, a film of titanium is first deposited on a Si/SiO2 substrate by an e-beam evaporation method. Then, the titanium film coated substrate is suspended upside down in a solution of zinc nitrate (0.011 M-0.055M) in an aqueous solution of hexamethylenetetramine (0.011 M-0.055M) and heated to 50-100° C. with vigorous stirring for 60-180 min. The resulting ZnO nanoroses are washed with de-ionized water and air-dried for 12-24 hours. The ZnO nanoroses are suitable for use for various device applications in electronics and in biomedical systems.
    Type: Application
    Filed: February 10, 2023
    Publication date: August 15, 2024
    Inventors: FAHEEM AHMED, NISHAT ARSHI, SHALENDRA KUMAR, NAGIH MOHAMMED SHAALAN, GHAZZAI ALMUTAIRI, BANDAR ALOTAIBI, THAMRAA ALSHAHRANI, P.M.Z. HASAN
  • Patent number: 11976365
    Abstract: A method of forming one-dimensional metal oxide nanostructures includes forming a TiN film on a substrate to provide a TiN-coated substrate; providing an aqueous mixture including hexamethylenetetramine and a metal nitrate, contacting the TiN-coated substrate with the aqueous mixture such that the TiN film on the substrate is in the aqueous mixture, and heating the aqueous mixture at a temperature ranging from about 50° C. to about 100° C. for a period of time ranging from about 60 minutes to about 180 minutes to form the metal oxide nanostructures. The method offers a low-temperature approach for the growth of metal oxide nanostructures. In an embodiment, the metal oxide is zinc oxide (ZnO) and the metal nitrate is zinc nitrate. In an embodiment the substrate is a Si/SiO2 substrate. In an embodiment, the metal oxide nanostructures include one-dimensional nanostructures, such as nanorods.
    Type: Grant
    Filed: March 16, 2023
    Date of Patent: May 7, 2024
    Assignee: KING FAISAL UNIVERSITY
    Inventors: Faheem Ahmed, Nishat Arshi, Shalendra Kumar, Nagih Mohammed Shaalan, Ghazzai Almutairi, P. M. Z. Hasan, Naushad Ahmad, Thamraa Alshahrani, Afzal Hussain
  • Publication number: 20230377810
    Abstract: A method of making a multi-walled carbon nanotubes (MWCNTs) electrode is a deposition-based method for growing MWCNTs on copper (Cu) foils to make binder-free electrodes for energy storage devices, such as those used in batteries and supercapacitors. A chromium layer is sputter coated on a copper foil substrate, and a nickel catalyst layer is sputter coated on the chromium layer, such that the chromium layer forms an electrically conductive barrier layer between the nickel catalyst layer and the copper foil substrate. The multi-walled carbon nanotubes are then formed on the copper foil substrate using plasma enhanced chemical vapor deposition.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 23, 2023
    Inventors: FAHEEM AHMED, NAGIH SHALAN, SHALENDRA KUMAR, ABDULLAH ALJAAFARI, ADIL ALSHOAIBI, NISHAT ARSHI
  • Publication number: 20220351916
    Abstract: An electrode for a photovoltaic device such as a dye sensitized solar cell includes a uniform layer of ZnO nanorods formed on a transparent conductive substrate and a natural dye, such as pigments from a natural source like coffee, on the ZnO nanorods. A dye sensitized solar cell formed from the electrode as a working electrode and a carbon-based counter electrode, such as a carbon soot layer on a transparent conductive substrate. The electrode and dye sensitized solar cell are formed by a simple, cost effective, environmentally friendly and easily scalable method.
    Type: Application
    Filed: May 2, 2021
    Publication date: November 3, 2022
    Inventors: FAHEEM AHMED, MOHAMMED BENALI KANOUN, SOURAYA GOUMRI-SAID, MOUSAAB BELARBI, NAGIH SHAALAN, NISHAT ARSHI, ABDULLAH ALJAAFARI, ADIL ALSHOAIBI
  • Patent number: 10149862
    Abstract: A facile approach is described to prepare monodisperse Fe3O4 and Co3O4 nanoparticles on chemically reduced graphene oxide (rGO) to form nanocomposites by low temperature solution route and MWI method, respectively. These processes are environmentally friendly and convenient compared with previously reported methods. The synthesized nanocomposites were characterized using x-ray diffraction spectroscopy (XRD), raman spectroscopy, scanning electron microscopy (SEM) measurements and UV/Vis absorption spectroscopy. XRD patterns revealed the high crystalline quality of the nanocomposites. SEM micrographs showed the morphology of the rGO nanosheets decorated by Co3O4 and Fe3O4 nanoparticles. UV/Vis study revealed the formation of Fe3O4/rGO and Co3O4/rGO nanocomposites with characteristics absorption maxima. Finally, preliminary results of using the Fe3O4/rGO and Co3O4/rGO composites for efficient killing of Human hepatocytes cancer (HepG2) cell are reported.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: December 11, 2018
    Assignee: Alfaisal University
    Inventors: Edreese H Alsharaeh, Faheem Ahmed, Nishat Arshi, Yasmin Mussa, Meshael Alturki, Yazeed Aldawsari, Azmat Khan
  • Publication number: 20170136062
    Abstract: A facile approach is described to prepare monodisperse Fe3O4 and Co3O4 nanoparticles on chemically reduced graphene oxide (rGO) to form nanocomposites by low temperature solution route and MWI method, respectively. These processes are environmentally friendly and convenient compared with previously reported methods. The synthesized nanocomposites were characterized using x-ray diffraction spectroscopy (XRD), raman spectroscopy, scanning electron microscopy (SEM) measurements and UV/Vis absorption spectroscopy. XRD patterns revealed the high crystalline quality of the nanocomposites. SEM micrographs showed the morphology of the rGO nanosheets decorated by Co3O4 and Fe3O4 nanoparticles. UV/Vis study revealed the formation of Fe3O4/rGO and Co3O4/rGO nanocomposites with characteristics absorption maxima. Finally, preliminary results of using the Fe3O4/rGO and Co3O4/rGO composites for efficient killing of Human hepatocytes cancer (HepG2) cell are reported.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Applicant: ALFAISAL UNIVERSITY
    Inventors: Edreese H. Alsharaeh, Faheem Ahmed, NISHAT ARSHI, YASMIN MUSSA, MESHAEL ALTURKI, YAZEED ALDAWSARI, AZMAT KHAN