Patents by Inventor Nitin Ingle

Nitin Ingle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11437242
    Abstract: Exemplary methods of etching semiconductor substrates may include flowing a fluorine-containing precursor into a processing region of a semiconductor processing chamber. The processing region may house a substrate having an exposed region of a first silicon-containing material and an exposed region of a second silicon-containing material. The second silicon-containing material may be exposed within a recessed feature defined by the substrate. The methods may include flowing a silicon-containing precursor into the processing region of the semiconductor processing chamber. The methods may include forming a plasma within the processing region of the semiconductor processing chamber to generate plasma effluents of the fluorine-containing precursor and the silicon-containing precursor. The methods may include contacting the substrate with the plasma effluents. The methods may include removing at least a portion of the second silicon-containing material.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: September 6, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jungmin Ko, Kwang-Soo Kim, Thomas Choi, Nitin Ingle
  • Patent number: 11328909
    Abstract: Exemplary methods for conditioning a processing region of a semiconductor processing chamber may include forming conditioning plasma effluents of an oxygen-containing precursor in a semiconductor processing chamber. The methods may include contacting interior surfaces of the semiconductor processing chamber bordering a substrate processing region with the conditioning plasma effluents. The methods may also include treating the interior surfaces of the semiconductor processing chamber.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 10, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Hanshen Zhang, Zhenjiang Cui, Nitin Ingle
  • Publication number: 20210217668
    Abstract: Processing methods may be performed to expose a contact region on a semiconductor substrate. The methods may include selectively removing a first region of a silicon material between source/drain regions of a semiconductor substrate to expose a first region of oxide material. The methods may include forming a liner over the first region of oxide material and contacting second regions of the silicon material proximate the source/drain regions of the semiconductor substrate. The methods may also include selectively removing the second regions of the silicon material proximate the source/drain regions of the semiconductor substrate to expose a second region of the oxide material. The methods may further include selectively removing the second region of the oxide material from a surface of a contact in the semiconductor structure.
    Type: Application
    Filed: March 8, 2021
    Publication date: July 15, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Sankuei Lin, Ajay Bhatnagar, Nitin Ingle
  • Patent number: 10943834
    Abstract: Processing methods may be performed to expose a contact region on a semiconductor substrate. The methods may include selectively removing a first region of a silicon material between source/drain regions of a semiconductor substrate to expose a first region of oxide material. The methods may include forming a liner over the first region of oxide material and contacting second regions of the silicon material proximate the source/drain regions of the semiconductor substrate. The methods may also include selectively removing the second regions of the silicon material proximate the source/drain regions of the semiconductor substrate to expose a second region of the oxide material. The methods may further include selectively removing the second region of the oxide material from a surface of a contact in the semiconductor structure.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Sankuei Lin, Ajay Bhatnagar, Nitin Ingle
  • Patent number: 10872778
    Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the hydrogen-containing precursor and the fluorine-containing precursor. The substrate may define a trench. A spacer may be formed along a sidewall of the trench, and the spacer may include a plurality of layers including a first layer of a carbon-containing material, a second layer of an oxygen-containing material, and a third layer of a carbon-containing material. The second layer of the spacer may be disposed between the first layer and third layer of the spacer. The methods may also include removing the oxygen-containing material.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: December 22, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Chia-Ling Kao, Anchuan Wang, Nitin Ingle
  • Patent number: 10861676
    Abstract: Exemplary methods for etching a variety of metal-containing materials may include flowing an oxygen-containing precursor into a semiconductor processing chamber. A substrate positioned within the semiconductor processing chamber may include a trench formed between two vertical columns and a metal-containing material arranged within a plurality of recesses defined by the two vertical columns. The plurality of recesses may include a first recess and a second recess adjacent to the first recess. The metal-containing material arranged within the first recess and the metal-containing material arranged within the second recess may be connected by the metal-containing material lining a portion of sidewalls of the trench. The methods may further include oxidizing the metal-containing material with the oxygen-containing precursor. The methods may also include flowing a halide precursor into the semiconductor processing chamber.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: December 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Zhenjiang Cui, Nitin Ingle, Feiyue Ma, Hanshen Zhang, Siliang Chang, Daniella Holm
  • Patent number: 10854426
    Abstract: Exemplary methods for laterally etching tungsten may include flowing an oxygen-containing precursor into a semiconductor processing chamber. A substrate positioned within the semiconductor processing chamber may include a trench formed between two vertical columns and tungsten slabs arranged within a plurality of recesses defined by at least one of the two vertical columns. At least two of the tungsten slabs may be connected by tungsten lining a portion of sidewalls of the trench. The methods may further include oxidizing the tungsten connecting the at least two of the tungsten slabs with the oxygen-containing precursor. The methods may include flowing a halide precursor into the semiconductor processing chamber. The methods may also include laterally etching the oxidized tungsten from the sidewalls of the trench.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: December 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Zhenjiang Cui, Nitin Ingle, Feiyue Ma, Hanshen Zhang, Siliang Chang, Daniella Holm
  • Patent number: 10770346
    Abstract: Exemplary methods for removing cobalt material may include flowing a chlorine-containing precursor into a processing region of a semiconductor processing chamber. The methods may include forming a plasma of the chlorine-containing precursor to produce plasma effluents. The methods may also include contacting an exposed region of cobalt with the plasma effluents. The exposed region of cobalt may include an overhang of cobalt on a trench defined on a substrate. The plasma effluents may produce cobalt chloride at the overhang of cobalt. The methods may include flowing a nitrogen-containing precursor into the processing region of the semiconductor processing chamber. The methods may further include contacting the cobalt chloride with the nitrogen-containing precursor. The methods may also include recessing the overhang of cobalt.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Xikun Wang, Jianxin Lei, Nitin Ingle, Roey Shaviv
  • Patent number: 10755941
    Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the hydrogen-containing precursor and the fluorine-containing precursor. The substrate may define a trench, and a layer of an oxygen-containing material may be disposed within the trench and exposed on the substrate. The methods may include halting delivery of the hydrogen-containing precursor. The methods may also include removing the oxygen-containing material.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: August 25, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Chia-Ling Kao, Anchuan Wang, Nitin Ingle
  • Publication number: 20200168463
    Abstract: Exemplary methods of etching semiconductor substrates may include flowing a fluorine-containing precursor into a processing region of a semiconductor processing chamber. The processing region may house a substrate having an exposed region of a first silicon-containing material and an exposed region of a second silicon-containing material. The second silicon-containing material may be exposed within a recessed feature defined by the substrate. The methods may include flowing a silicon-containing precursor into the processing region of the semiconductor processing chamber. The methods may include forming a plasma within the processing region of the semiconductor processing chamber to generate plasma effluents of the fluorine-containing precursor and the silicon-containing precursor. The methods may include contacting the substrate with the plasma effluents. The methods may include removing at least a portion of the second silicon-containing material.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 28, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Jungmin Ko, Kwang-Soo Kim, Tom Choi, Nitin Ingle
  • Patent number: 10600639
    Abstract: Processing methods may be performed to form recesses in a semiconductor substrate. The methods may include oxidizing an exposed silicon nitride surface on a semiconductor substrate within a processing region of a semiconductor processing chamber. The methods may include forming an inert plasma within the processing region of the processing chamber. Effluents of the inert plasma may be utilized to modify the oxidized silicon nitride. A remote plasma may be formed from a fluorine-containing precursor to produce plasma effluents. The methods may include flowing the plasma effluents to the processing region of the semiconductor processing chamber. The methods may also include removing the modified oxidized silicon nitride from the semiconductor substrate.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: March 24, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jungmin Ko, Tom Choi, Nitin Ingle, Kwang-Soo Kim, Theodore Wou
  • Patent number: 10593553
    Abstract: Exemplary methods for etching a germanium-containing material may include forming a plasma of a fluorine-containing precursor in a remote plasma region of a semiconductor processing chamber. The methods may include flowing effluents of the fluorine-containing precursor through apertures defined in a chamber component. The apertures may be coated with a catalytic material. The methods may include reducing a concentration of fluorine radicals in the plasma effluents with the catalytic material. The methods may also include delivering the plasma effluents to a processing region of the semiconductor processing chamber. A substrate having an exposed region of a germanium-containing material may be housed within the processing region. The methods may further include etching the germanium-containing material.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: March 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Mikhail Korolik, Nitin Ingle, Dimitri Kioussis
  • Patent number: 10573527
    Abstract: Systems and methods of etching a semiconductor substrate may include flowing an oxygen-containing precursor into a substrate processing region of a semiconductor processing chamber. The substrate processing region may house the semiconductor substrate, and the semiconductor substrate may include an exposed metal-containing material. The methods may include flowing ammonia into the substrate processing region at a temperature above about 200° C. The methods may further include removing an amount of the metal-containing material.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: February 25, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Geetika Bajaj, Robert Jan Visser, Nitin Ingle, Zihui Li, Prerna Sonthalia Goradia
  • Patent number: 10566206
    Abstract: Processing methods may be performed to remove unwanted materials from a substrate, such as a native oxide material. The methods may include forming an inert plasma within a processing region of a processing chamber. Effluents of the inert plasma may be utilized to modify a surface of an exposed material on a semiconductor substrate within the processing region of the semiconductor chamber. A remote plasma may be formed from a fluorine-containing precursor to produce plasma effluents. The methods may include flowing the plasma effluents to the processing region of the semiconductor processing chamber. The methods may also include removing the modified surface of the exposed material from the semiconductor substrate.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: February 18, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Mandar Pandit, Nitin Ingle
  • Publication number: 20200013628
    Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the hydrogen-containing precursor and the fluorine-containing precursor. The substrate may define a trench, and a layer of an oxygen-containing material may be disposed within the trench and exposed on the substrate. The methods may include halting delivery of the hydrogen-containing precursor. The methods may also include removing the oxygen-containing material.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Zhijun Chen, Chia-Ling Kao, Anchuan Wang, Nitin Ingle
  • Publication number: 20200013632
    Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the hydrogen-containing precursor and the fluorine-containing precursor. The substrate may define a trench. A spacer may be formed along a sidewall of the trench, and the spacer may include a plurality of layers including a first layer of a carbon-containing material, a second layer of an oxygen-containing material, and a third layer of a carbon-containing material. The second layer of the spacer may be disposed between the first layer and third layer of the spacer. The methods may also include removing the oxygen-containing material.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Zhijun Chen, Chia-Ling Kao, Anchuan Wang, Nitin Ingle
  • Patent number: 10497579
    Abstract: Exemplary cleaning or etching methods may include flowing a fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. Methods may include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor. The methods may also include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region, and the substrate may include a region of exposed oxide and a region of exposed metal. Methods may also include providing a hydrogen-containing precursor to the processing region. The methods may further include removing at least a portion of the exposed oxide.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: December 3, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Lin Xu, Anchuan Wang, Nitin Ingle
  • Patent number: 10497573
    Abstract: Precursors, such as interhalogens and/or compounds formed of noble gases and halogens, may be supplied in a gaseous form to a semiconductor processing chamber at a predetermined amount, flow rate, pressure, and/or temperature in a cyclic manner such that atomic layer etching of select semiconductor materials may be achieved in each cycle. In the etching process, the element of the precursor that has a relatively higher electronegativity may react with select semiconductor materials to form volatile etching byproducts. The element of the precursor that has a relatively lower electronegativity may form a gas that may be recycled to re-form an precursor with one or more halogen-containing materials using a plasma process.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: December 3, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Prerna Sonthalia Goradia, Fei Wang, Geetika Bajaj, Nitin Ingle, Zihui Li, Robert Jan Visser, Nitin Deepak
  • Patent number: 10468267
    Abstract: Exemplary cleaning or etching methods may include flowing a fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. Methods may include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor. The methods may also include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region, and the substrate may include a region of exposed oxide and a region of exposed metal. Methods may also include providing a hydrogen-containing precursor to the processing region. The methods may further include removing at least a portion of the exposed oxide.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: November 5, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Lin Xu, Anchuan Wang, Nitin Ingle
  • Publication number: 20190311909
    Abstract: Systems and methods of etching a semiconductor substrate may include flowing an oxygen-containing precursor into a substrate processing region of a semiconductor processing chamber. The substrate processing region may house the semiconductor substrate, and the semiconductor substrate may include an exposed metal-containing material. The methods may include flowing ammonia into the substrate processing region at a temperature above about 200° C. The methods may further include removing an amount of the metal-containing material.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 10, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Geetika Bajaj, Robert Jan Visser, Nitin Ingle, Zihui Li, Prerna Sonthalia Goradia