Patents by Inventor Nitin S. Satarkar

Nitin S. Satarkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190279783
    Abstract: Polymer composites that are suitable for use as electromagnetic interference mitigaters include a lossy polymeric matrix, ceramic particles dispersed within the polymeric matrix, and conductive particles dispersed within the polymeric matrix. The lossy polymeric matrix may be a fluorocarbon-based polymer matrix, or an epoxy-based polymer matrix. The ceramic particles may be metal oxide particles, especially copper oxide (CuO) particles. The conductive particles may be carbon black. Other electromagnetic interference mitigating polymer matrices include a lossy polymeric matrix and copper oxide (CuO) particles dispersed within the polymeric matrix.
    Type: Application
    Filed: May 21, 2019
    Publication date: September 12, 2019
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Dipankar Ghosh, Biplab K. Roy, Nitin S. Satarkar
  • Patent number: 10340054
    Abstract: Polymer composites that are suitable for use as electromagnetic interference mitigaters include a lossy polymeric matrix, ceramic particles dispersed within the polymeric matrix, and conductive particles dispersed within the polymeric matrix. The lossy polymeric matrix may be a fluorocarbon-based polymer matrix, or an epoxy-based polymer matrix. The ceramic particles may be metal oxide particles, especially copper oxide (CuO) particles. The conductive particles may be carbon black. Other electromagnetic interference mitigating polymer matrices include a lossy polymeric matrix and copper oxide (CuO) particles dispersed within the polymeric matrix.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: July 2, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Dipankar Ghosh, Biplab K. Roy, Nitin S. Satarkar
  • Publication number: 20170271040
    Abstract: Polymer composites that are suitable for use as electromagnetic interference mitigaters include a lossy polymeric matrix, ceramic particles dispersed within the polymeric matrix, and conductive particles dispersed within the polymeric matrix. The lossy polymeric matrix may be a fluorocarbon-based polymer matrix, or an epoxy-based polymer matrix. The ceramic particles may be metal oxide particles, especially copper oxide (CuO) particles. The conductive particles may be carbon black. Other electromagnetic interference mitigating polymer matrices include a lossy polymeric matrix and copper oxide (CuO) particles dispersed within the polymeric matrix.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Dipankar Ghosh, Biplab K. Roy, Nitin S. Satarkar
  • Patent number: 9704613
    Abstract: Polymer composites that are suitable for use as electromagnetic interference mitigaters include a lossy polymeric matrix, ceramic particles dispersed within the polymeric matrix, and conductive particles dispersed within the polymeric matrix. The lossy polymeric matrix may be a fluorocarbon-based polymer matrix, or an epoxy-based polymer matrix. The ceramic particles may be metal oxide particles, especially copper oxide (CuO) particles. The conductive particles may be carbon black. Other electromagnetic interference mitigating polymer matrices include a lossy polymeric matrix and copper oxide (CuO) particles dispersed within the polymeric matrix.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: July 11, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Dipankar Ghosh, Biplab K. Roy, Nitin S. Satarkar
  • Publication number: 20160019996
    Abstract: Polymer composites that are suitable for use as electromagnetic interference mitigaters include a lossy polymeric matrix, ceramic particles dispersed within the polymeric matrix, and conductive particles dispersed within the polymeric matrix. The lossy polymeric matrix may be a fluorocarbon-based polymer matrix, or an epoxy-based polymer matrix. The ceramic particles may be metal oxide particles, especially copper oxide (CuO) particles. The conductive particles may be carbon black. Other electromagnetic interference mitigating polymer matrices include a lossy polymeric matrix and copper oxide (CuO) particles dispersed within the polymeric matrix.
    Type: Application
    Filed: February 18, 2014
    Publication date: January 21, 2016
    Applicant: 3M Innovative Properties Company
    Inventors: Dipankar Ghosh, Biplab K. Roy, Nitin S. Satarkar