Patents by Inventor Nitish Swarup

Nitish Swarup has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190290373
    Abstract: Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
    Type: Application
    Filed: June 12, 2019
    Publication date: September 26, 2019
    Inventors: Gregory K. Toth, Nitish Swarup, Thomas R. Nixon, David Q. Larkin, Steven J. Colton
  • Patent number: 10405944
    Abstract: A computer-assisted medical device includes an articulated arm with a plurality of joints and a control unit coupled to the articulated arm. The control unit is configured to send a command to a plurality of brakes in the articulated arm to begin a release of the plurality of brakes in a predetermined staggered manner. In some embodiments the predetermined staggered manner prevents the simultaneous release of the plurality of breaks. In some examples, the predetermined staggered manner causes each brake in the plurality of brakes to release within a predetermined time of each other. In some embodiments, the first predetermined staggered manner causes each brake in the first plurality of brakes to release within a predetermined time of each other. In some embodiments, the first predetermined staggered manner causes each brake in the first plurality of brakes to begin a gradual release within a predetermined time of each other.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: September 10, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Nitish Swarup, Paul G. Griffiths, Goran A. Lynch, Daniel N. Miller
  • Publication number: 20190262085
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include augmenting a Jacobian so that joint movements calculated. from the Jacobian perform one or more auxiliary tasks and/or desired joint movements concurrent with commanded end effector movement, the one or more auxiliary tasks and/or desired joint movements extending into a null-space. The auxiliary tasks and desired joint movements include inhibiting movement of one or more joints, inhibiting collisions between adjacent manipulators or between a manipulator and a patient surface, commanded reconfiguration of one or more joints, or various other tasks or combinations thereof. Such joint movements may be provided using joint velocities calculated from the pseudo-inverse solution of the: augmented Jacobian. Various configurations for systems utilizing such methods are provided herein.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Inventors: Arjang M. Hourtash, Nitish Swarup, Pushkar Hingwe
  • Patent number: 10350015
    Abstract: Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: July 16, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Gregory K. Toth, Nitish Swarup, Thomas R. Nixon, David Q. Larkin, Steven J. Colton
  • Publication number: 20190209251
    Abstract: A tele-operated system includes a platform, a manipulator supported by the platform, a support structure supporting the platform, and a processor. In a platform movement mode the processor is configured to sense a manual movement of a link of the manipulator relative to the platform that moves the link from a first to a second positional relationship relative to the platform wherein a difference between the first and second positional relationships includes a displacement having components in first, second, and third directions that are perpendicular to one another, calculate, in response to the sensed manual movement, a command for the support structure that causes the link to move in the first direction so as to reduce the displacement in the first direction and does not change the displacement in the second direction, and transmit the command to the support structure so as to move the platform and the manipulator.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 11, 2019
    Inventors: Paul G. Griffiths, Paul W. Mohr, Nitish Swarup, Michael Costa, David Q. Larkin, Thomas G. Cooper
  • Patent number: 10327855
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include augmenting a Jacobian so that joint movements calculated from the Jacobian perform one or more auxiliary tasks and/or desired joint movements concurrent with commanded end effector movement, the one or more auxiliary tasks and/or desired joint movements extending into a null-space. The auxiliary tasks and desired joint movements include inhibiting movement of one or more joints, inhibiting collisions between adjacent manipulators or between a manipulator and a patient surface, commanded reconfiguration of one or more joints, or various other tasks or combinations thereof. Such joint movements may be provided using joint velocities calculated from the pseudo-inverse solution of the augmented Jacobian. Various configurations for systems utilizing such methods are provided herein.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: June 25, 2019
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Arjang M. Hourtash, Nitish Swarup, Pushkar Hingwe
  • Publication number: 20190183593
    Abstract: Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Inventors: Arjang M. Hourtash, Nitish Swarup
  • Publication number: 20190176327
    Abstract: Systems and methods for instrument disturbance compensation include a computer-assisted device. The computer-assisted device includes an articulated arm having a plurality of joints and a control unit coupled to the articulated arm. The control unit is configured to detect a disturbance to the articulated arm caused by a release of one or more brakes of the plurality of joints and maintain a position of a point of interest associated with the articulated arm by compensating for the disturbance using one or more joints of the plurality of joints. In some embodiments, the point of interest is a tip of an end effector of the articulated arm. In some embodiments, the control unit is configured to determine a predicted motion for the point of interest based on the disturbance and send a drive command to move the point of interest in a direction opposite to the predicted motion.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 13, 2019
    Inventors: Nitish Swarup, Paul G. Griffiths, Goran A. Lynch, Daniel N. Miller
  • Publication number: 20190159857
    Abstract: A cart for supporting one or more instruments during a computer-assisted remote procedure can comprise a base; a steering interface having a portion configured to be grasped by a user; a sensor mechanism configured to detect a force applied to the steering interface by a user; and a switch operable between an engaged position and a disengaged position. The cart may further include a drive system comprising a control module operably coupled to receive an input from the sensor mechanism in response to the force applied to the steering interface and, on the condition that the switch is in the engaged position, to output a movement command based on the received input from the sensor mechanism. A driven wheel mounted to the base of the cart may be configured to impart motion to the cart in response to the movement command.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 30, 2019
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. GRIFFITHS, Arjang M. HOURTASH, Paul W. MOHR, David W. ROBINSON, Nitish SWARUP, John W. ZABINSKI, Mark W. ZIMMER
  • Publication number: 20190159856
    Abstract: A cart for supporting one or more instruments for a computer-assisted, remote procedure can include a base and a support structure extending from the base and adjustable to different configurations, the support structure being configured to support one or more instruments to perform a remote procedure. The cart can further include a steering interface configured to be grasped by a user and a sensor mechanism configured to detect a force applied to the steering interface. The cart also can include a drive system comprising a control module operably coupled to receive an input from the sensor mechanism in response to the force applied to the steering interface and information about a configuration of the support structure, the control module operably coupled to output a movement command based on the received input from the sensor mechanism and the information about the configuration of the support structure.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 30, 2019
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. GRIFFITHS, Arjang M. HOURTASH, Paul W. MOHR, David W. ROBINSON, Nitish SWARUP, John W. ZABINSKI, Mark W. ZIMMER
  • Publication number: 20190142533
    Abstract: A system and method for integrated table motion includes a device. The device includes an articulated arm having joints and a distal portion distal to the joints and a control unit. To support integrated motion with a separate table, the control unit is configured to receive a table movement request from the table, determine whether allowing the table movement request would result in a first joint of the joints being at a range of motion limit, allow the table to perform the table movement request based on determining that allowing the table to perform the table movement request would not result in the first joint being at the range of motion limit, track movement of the table due to performing the table movement request, and maintain, using the joints and based on the tracked movement, a position and/or an orientation of the distal portion relative to the table.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 16, 2019
    Inventors: Brandon D. Itkowitz, Paul G. Griffiths, Jason Hemphill, Goran A. Lynch, Daniel N. Miller, Patrick O'Grady, Nitish Swarup, Kamyar Ziaei
  • Patent number: 10285764
    Abstract: Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. One or more kinematic linkage sub-systems may include joints that are actively driven, passive, or a mix of both, and may employ a set-up mode in which one or more of the joints are actively driven in response to manual articulation of one or more other joints of the kinematic chain. In an exemplary embodiment, the actively driven joints will move a platform structure that supports multiple manipulators in response to movement of one of the manipulators, facilitating and expediting the arrangement of the overall system by moving those multiple manipulators as a unit into alignment with the workspace. Manual independent positioning of the manipulator can be provided through passive set-up joint systems supporting the manipulators relative to the platform.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: May 14, 2019
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. Griffiths, Paul W. Mohr, Nitish Swarup, Michael Costa, David Q. Larkin, Thomas G. Cooper
  • Patent number: 10272569
    Abstract: A computer-assisted medical device including a first joint set on an articulated arm, a second joint set on the articulated arm, and a control unit coupled to the first joint set and second joint set. The control unit determines a disturbance to the first joint set caused by a release of one or more brakes and compensates for the disturbance using the second joint set to reduce motion to a position of a point of interest. In some embodiments, the control unit compensates for the disturbance by determining an initial position for the point of interest with respect to a reference point, determining a predicted motion for the point of interest based on the disturbance to the first joint set, and sending a drive command to the second joint set to move the point of interest in a direction opposite to the predicted motion.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: April 30, 2019
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Nitish Swarup, Paul G. Griffiths, Goran A. Lynch, Daniel N. Miller
  • Patent number: 10251715
    Abstract: Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: April 9, 2019
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Arjang M. Hourtash, Nitish Swarup
  • Publication number: 20190090968
    Abstract: Systems and methods are provided for the elimination/mitigation of vibration arising from a mode transition during robotic operation include a moveable robotic mechanism and a processor configured to control the robotic mechanism. The processor is configured to detect a request for a mode transition, wherein the request for the mode transition designates a new mode that is different than a current mode, determine initial parameters of the robotic mechanism, calculate a smoothing curve, and move the robotic mechanism according to the smoothing curve. The initial parameters include a position and a velocity of the robotic mechanism. The smoothing curve transitions between the current mode and the new mode and is C3 continuous. In some embodiments, to calculate the smoothing curve, the processor is configured to establish a first command position, calculate a step value, and set a second command position based on the first command position and the step value.
    Type: Application
    Filed: November 29, 2018
    Publication date: March 28, 2019
    Inventors: Nitish Swarup, David W. Robinson
  • Publication number: 20190083185
    Abstract: A system includes manipulators and a controller. The controller is configured to detect mounting of an imaging device to a first manipulator of the manipulators, determine a first reference frame for the imaging device based on the mounting of the imaging device to the first manipulator, control a tool relative to the first reference frame by controlling a relative position and orientation of a tip of the tool relative to the imaging device in the first reference frame by correlating movement of a master input control to movement of the tool in the first reference frame, detect mounting of the imaging device to a second manipulator of the manipulators, the second manipulator being different from the first manipulator, determine a second reference frame for the imaging device based on the mounting of the imaging device to the second manipulator, and control the tool relative to the second reference frame.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Inventors: Niels Smaby, Gregory W. Dachs, II, Nicola Diolaiti, Pushkar Hingwe, Thomas R. Nixon, Bruce M. Schena, Nitish Swarup
  • Patent number: 10226306
    Abstract: A system and method for an integrated surgical table includes a medical device including an articulated arm having one or more first and second joints and a control unit. The articulated arm has at least a cannula, an endoscope, or an instrument mounted distal to the first and second joints, which is inserted into a patient at a body opening. The control unit unlocks the first joints, receives a surgical table movement request, determines whether the surgical table movement request should be granted, allows the surgical table to perform the requested movement based on the determining, uses the first joints to allow the articulated arm to track movement of the body opening based on forces applied by a body wall at the body opening, and compensates for changes in a pose of the cannula, endoscope, or instrument due to the tracked movement by performing compensating motions in the second joints.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: March 12, 2019
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Paul G. Griffiths, Jason Hemphill, Goran A. Lynch, Daniel N. Miller, Patrick O'Grady, Nitish Swarup, Kamyar Ziaei
  • Publication number: 20190054620
    Abstract: A system and method of collision avoidance includes determining first positions of first joints of a first repositionable arm and second positions of second joints of a second repositionable arm. Distal ends of the first and second repositionable arms are configured to support first and second instruments, respectively. The system and method further include determining first and second virtual boundaries around the first and second repositionable arms, determining an overlap between the first and second virtual boundaries, determining an overlap force on the first repositionable arm due to the overlap, mapping the overlap force to virtual torques on the first joints proximal to the overlap, determining a tip force on a distal end of the first instrument, and applying the tip force as feedback on the first instrument.
    Type: Application
    Filed: February 3, 2017
    Publication date: February 21, 2019
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Paul G. GRIFFITHS, Nitish SWARUP
  • Patent number: 10201390
    Abstract: Systems and method are provided for the elimination/mitigation of vibration arising from a mode transition during a robotic surgery. The robotic surgery can be performed with a patient side cart, portions of which can be affected by the mode transition. Initial parameters for the portions of the patient side cart that can be affected by the mode transition are identified and are used to create a smoothing curve. The smoothing curve can direct the movement of the portions of the patient side cart to transition between the modes. The smoothing curve can be continuously generated until a new mode transition is requested.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: February 12, 2019
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Nitish Swarup, David W. Robinson
  • Patent number: 10149729
    Abstract: Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: December 11, 2018
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Niels Smaby, Gregory W. Dachs, II, Nicola Diolaiti, Pushkar Hingwe, Thomas R. Nixon, Bruce M. Schena, Nitish Swarup