Patents by Inventor Nitish Swarup

Nitish Swarup has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10070931
    Abstract: A system and method of maintaining a tool pose for a computer-assisted medical device with an articulated arm including one or more first joints and one or more second joints, a tool distal to the first joints and the second joints, and a control unit coupled to the first joints and the second joints. The control unit maintains a pose of the tool during movement of the first joints using the second joints by determining a reference coordinate frame for the tool, determining a reference transform of the tool in the reference coordinate frame prior to the movement of the first joints, determining an actual transform of the tool in the reference coordinate frame while the first joints are being moved, determining differences between the reference transform and the actual transform, and maintaining the pose of the tool by driving the second joints based on the differences.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: September 11, 2018
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Nitish Swarup, Paul G. Griffiths, Goran Lynch
  • Patent number: 10071479
    Abstract: Devices, systems, and methods for providing a desired movement of one or more joints of a manipulator arm having a plurality of joints with redundant degrees of freedom while effecting commanded movement of a distal end effector of the manipulator. Methods include defining a constraint, such as a network of paths, within a joint space defined by the one or more joints and determining a movement of the plurality of joints within a null-space to track the constraints with the one or more joints. Methods may further include calculating a reconfiguration movement of the joints and modifying the constraints to coincide with a reconfigured position of the one or more joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: September 11, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Nitish Swarup, Arjang M. Hourtash, Paul W. Mohr
  • Patent number: 10064689
    Abstract: A system and method of aligning with a reference target includes a computer-assisted medical device. The computer-assisted medical device includes an orientation platform, one or more first joints proximal to the orientation platform, one or more second joints distal to the orientation platform, one or more links distal to the orientation platform, a reference instrument coupled to the orientation platform by the second joints and the links; and a control unit coupled to the first joints and the second joints. The control unit determines a pose of the reference instrument. The pose includes a reference point and a reference orientation. The control unit further positions the orientation platform over the reference point using the first joints, rotates the orientation platform to align the orientation platform with the reference orientation using the first joints, and maintains the pose of the reference instrument using the second joints.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: September 4, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Nitish Swarup, Paul G. Griffiths, Brandon D. Itkowitz, Michael Hanuschik, Thomas R. Nixon
  • Patent number: 10034718
    Abstract: Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. A set-up mode employs an intuitive user interface in which one or more joints of the kinematic linkage are initially held static by a brake or joint drive system. The user may articulate the joint(s) by manually pushing against the linkage with a force, torque, or the like that exceeds a manual articulation threshold. Articulation of the moving joints is facilitated by modifying the signals transmitted to the brake or drive system. The system may sense completion of the reconfiguration from a velocity of the joint(s) falling below a threshold, optionally for a desired dwell time. Embodiments of the invention can provide for manual movement of a platform supporting a plurality of surgical manipulators or the like without having to add additional input devices.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: July 31, 2018
    Assignee: Intutitive Surgical Operations, Inc.
    Inventors: Paul Griffiths, Paul Mohr, Nitish Swarup, Michael Hanuschik
  • Patent number: 10034717
    Abstract: A system and method of breakaway clutching in a computer-assisted medical device includes an articulated arm having one or more first joints and a control unit coupled to the articulated arm and having one or more processors. The control unit operates each of the first joints in multiple states. The multiple states include a locked state, wherein movement of respective first joints is restricted, and a float state, wherein movement of the respective first joints is permitted. The control unit further switches one or more second joints selected from the first joints from the locked state to the float state when a stimulus on the second joints exceeds one or more unlock thresholds and switches the second joints from the float state to the locked state when a velocity of each of the second joints is below one or more lock thresholds.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: July 31, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Daniel Miller, Nitish Swarup, Michael Turner, Arjang M. Hourtash, Paul G. Griffiths, Paul W. Mohr
  • Patent number: 9999476
    Abstract: Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. One or more kinematic linkage sub-systems may include joints that are actively driven, passive, or a mix of both, and may employ a set-up mode in which one or more of the joints are actively driven in response to manual articulation of one or more other joints of the kinematic chain. In an exemplary embodiment, the actively driven joints will move a platform structure that supports multiple manipulators in response to movement of one of the manipulators, facilitating and expediting the arrangement of the overall system by moving those multiple manipulators as a unit into alignment with the workspace. Manual independent positioning of the manipulator can be provided through passive set-up joint systems supporting the manipulators relative to the platform.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: June 19, 2018
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul Griffiths, Paul Mohr, Nitish Swarup, Michael Costa, David Larkin, Thomas Cooper, Michael Hanuschik
  • Publication number: 20180153630
    Abstract: Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Application
    Filed: January 31, 2018
    Publication date: June 7, 2018
    Inventors: Arjang M. Hourtash, Nitish Swarup
  • Patent number: 9931172
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include calculating weighted joint velocities using a weighting matrix within the joint space to anisotropically emphasize joint movement within a null-space to provide the desired movement of a first set of joints. Methods may include calculating joint velocities that achieve the desired end effector movement using a pseudo-inverse solution and adjusting the calculated joint velocities using a potential function gradient within the joint space corresponding to the desired movement of the first set of joints. Methods may include use of a weighted pseudo-inverse solution and also an augmented Jacobian solution. One or more auxiliary movements may also be provided using joint velocities calculated from the pseudo-inverse solution. Various configurations for systems utilizing such methods are provided herein.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: April 3, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Nitish Swarup
  • Patent number: 9907619
    Abstract: Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: March 6, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Nitish Swarup
  • Patent number: 9840276
    Abstract: A patient side cart for a teleoperated surgical system can include one or more wheels positioned to support the cart for wheeled motion on a ground surface, at least one manipulator portion for holding a surgical instrument, a steering interface having a grasping portion and comprising a sensor positioned to sense turning, fore, and aft forces exerted on the grasping portion to move the cart, wherein the sensor is in signal communication with a drive control system of the patient side cart, and an additional sensor operatively coupled to the drive control system. The additional sensor may be positioned between the steering interface and the wheels on a side of the cart at which the steering interface is positioned, wherein in response to a force exerted on the additional sensor during backward motion of the cart in response to an aft force exerted on the grasping portion, the sensor sends a signal to the drive control system to stop motion of the cart.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: December 12, 2017
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. Griffiths, Paul W. Mohr, Alan W. Petersen, David Robinson, Nitish Swarup, Mark W. Zimmer, Alexander Makhlin, Julio Santos-Munne, Eric Faulring, Thomas Moyer
  • Publication number: 20170340397
    Abstract: Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
    Type: Application
    Filed: August 15, 2017
    Publication date: November 30, 2017
    Inventors: Niels SMABY, Gregory W. DACHS, II, Nicola DIOLAITI, Pushkar HINGWE, Thomas R. NIXON, Bruce M. SCHENA, Nitish SWARUP
  • Publication number: 20170333141
    Abstract: A system and method for an integrated surgical table includes a medical device including an articulated arm having one or more first and second joints and a control unit. The articulated arm has at least a cannula, an endoscope, or an instrument mounted distal to the first and second joints, which is inserted into a patient at a body opening. The control unit unlocks the first joints, receives a surgical table movement request, determines whether the surgical table movement request should be granted, allows the surgical table to perform the requested movement based on the determining, uses the first joints to allow the articulated arm to track movement of the body opening based on forces applied by a body wall at the body opening, and compensates for changes in a pose of the cannula, endoscope, or instrument due to the tracked movement by performing compensating motions in the second joints.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: BRANDON D. ITKOWITZ, PAUL G. GRIFFITHS, JASON HEMPHILL, GORAN A. LYNCH, DANIEL N. MILLER, PATRICK O'GRADY, NITISH SWARUP, KAMYAR ZIAEI
  • Publication number: 20170334067
    Abstract: A computer-assisted medical device including a first joint set on an articulated arm, a second joint set on the articulated arm, and a control unit coupled to the first joint set and second joint set. The control unit determines a disturbance to the first joint set caused by a release of one or more brakes and compensates for the disturbance using the second joint set to reduce motion to a position of a point of interest. In some embodiments, the control unit compensates for the disturbance by determining an initial position for the point of interest with respect to a reference point, determining a predicted motion for the point of interest based on the disturbance to the first joint set, and sending a drive command to the second joint set to move the point of interest in a direction opposite to the predicted motion.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: NITISH SWARUP, PAUL G. GRIFFITHS, GORAN A. LYNCH, DANIEL N. MILLER
  • Publication number: 20170333142
    Abstract: A computer-assisted medical device includes a first articulated arm, the first articulated arm having an end effector, a first joint set, a second joint set and a control unit. The control unit configures one or more joints in the first joint set to a floating mode, detects movement of the first joint set caused by a movement of the surgical table, drives the second joint set based on the movement of the surgical table, receives an instrument motion command to move the end effector while the surgical table is moving, and moves the end effector based on the instrument motion command. In some embodiments, the instrument motion command is relative to an imaging coordinate frame. In some embodiments, the imaging coordinate frame is based on a pose of an imaging device saved prior to the movement of the surgical table.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: BRANDON D. ITKOWITZ, PAUL G. GRIFFITHS, NITISH SWARUP, KAMYAR ZIAEI
  • Publication number: 20170312047
    Abstract: A computer-assisted medical device includes an articulated arm with a plurality of joints and a control unit coupled to the articulated arm. The control unit is configured to send a command to a plurality of brakes in the articulated arm to begin a release of the plurality of brakes in a predetermined staggered manner. In some embodiments the predetermined staggered manner prevents the simultaneous release of the plurality of breaks. In some examples, the predetermined staggered manner causes each brake in the plurality of brakes to release within a predetermined time of each other. In some embodiments, the first predetermined staggered manner causes each brake in the first plurality of brakes to release within a predetermined time of each other. In some embodiments, the first predetermined staggered manner causes each brake in the first plurality of brakes to begin a gradual release within a predetermined time of each other.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 2, 2017
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: NITiSH SWARUP, PAUL G. GRIFFITHS, GORAN A. LYNCH
  • Publication number: 20170311778
    Abstract: The present invention is directed to an articulate minimally invasive surgical endoscope with a flexible wrist having at least one degree of freedom. When used with a surgical robot having a plurality of robot arms, the endoscope can be used with any of the plurality of arms thereby allowing the use a universal arm design. The endoscope in accordance to the present invention is made more intuitive to a user by attaching a reference frame used for controlling the at least one degree of freedom motion to the flexible wrist for wrist motion associated with the at least one degree of freedom. The endoscope in accordance to the present invention attenuates undesirable motion at its back/proximal end by acquiring the image of the object in association with the at least one degree of freedom based on a reference frame rotating around a point of rotation located proximal to the flexible wrist.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Christopher J. Hasser, Nitish Swarup, Thomas G. Cooper, S. Christopher Anderson
  • Patent number: 9782230
    Abstract: Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: October 10, 2017
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Niels Smaby, Gregory W. Dachs, II, Nicola Diolaiti, Pushkar Hingwe, Thomas R. Nixon, Bruce M. Schena, Nitish Swarup
  • Publication number: 20170273748
    Abstract: Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include augmenting a Jacobian so that joint movements calculated from the Jacobian perform one or more auxiliary tasks and/or desired joint movements concurrent with commanded end effector movement, the one or more auxiliary tasks and/or desired joint movements extending into a null-space. The auxiliary tasks and desired joint movements include inhibiting movement of one or more joints, inhibiting collisions between adjacent manipulators or between a manipulator and a patient surface, commanded reconfiguration of one or more joints, or various other tasks or combinations thereof. Such joint movements may be provided using joint velocities calculated from the pseudo-inverse solution of the augmented Jacobian. Various configurations for systems utilizing such methods are provided herein.
    Type: Application
    Filed: September 17, 2015
    Publication date: September 28, 2017
    Inventors: Arjang M. Hourtash, Nitish Swarup, Pushkar Hingwe
  • Publication number: 20170253270
    Abstract: A patient side cart for a teleoperated surgical system can include one or more wheels positioned to support the cart for wheeled motion on a ground surface, at least one manipulator portion for holding a surgical instrument, a steering interface having a grasping portion and comprising a sensor positioned to sense turning, fore, and aft forces exerted on the grasping portion to move the cart, wherein the sensor is in signal communication with a drive control system of the patient side cart, and an additional sensor operatively coupled to the drive control system. The additional sensor may be positioned between the steering interface and the wheels on a side of the cart at which the steering interface is positioned, wherein in response to a force exerted on the additional sensor during backward motion of the cart in response to an aft force exerted on the grasping portion, the sensor sends a signal to the drive control system to stop motion of the cart.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 7, 2017
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Paul G. GRIFFITHS, Paul W. MOHR, Alan W. PETERSEN, David ROBINSON, Nitish SWARUP, Mark W. ZIMMER, Alexander MAKHLIN, Julio SANTOS-MUNNE, Eric FAULRING, Thomas MOYER
  • Publication number: 20170246743
    Abstract: Devices, systems, and methods for providing a desired movement of one or more joints of a manipulator arm having a plurality of joints with redundant degrees of freedom while effecting commanded movement of a distal end effector of the manipulator. Methods include defining a constraint, such as a network of paths, within a joint space defined by the one or more joints and determining a movement of the plurality of joints within a null-space to track the constraints with the one or more joints. Methods may further include calculating a reconfiguration movement of the joints and modifying the constraints to coincide with a reconfigured position of the one or more joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Application
    Filed: March 10, 2017
    Publication date: August 31, 2017
    Inventors: Nitish Swarup, Arjang M. Hourtash, Paul W. Mohr