Patents by Inventor Nityananda Chowdhury

Nityananda Chowdhury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10238689
    Abstract: The present disclosure provides a method for killing persister cells with mitomycin C and/or cisplatin, or derivatives thereof. Recalcitrant infections are difficult to treat due to persister cells, a subpopulation of all bacterial populations that is highly tolerant against all traditional antibiotics since the cells are dormant and antibiotics are designed to kill growing cells. Here, we show that MMC and cisplatin eradicate persister cells through a growth-independent mechanism, cross-linking DNA. We find both agents are effective against both planktonic cultures and highly robust biofilm cultures for a broad range of bacterial species, including commensal Escherichia coli K-12 as well as pathogenic species of E. coli, Staphylococcus aureus, and Pseudomonas aeruginosa. In certain approaches cisplatin is superior to MMC.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: March 26, 2019
    Assignee: The Penn State Research Foundation
    Inventors: Thomas Wood, Brian Kwan, Nityananda Chowdhury
  • Publication number: 20180117083
    Abstract: The present disclosure provides a method for killing persister cells with mitomycin C and/or cisplatin, or derivatives thereof. Recalcitrant infections are difficult to treat due to persister cells, a subpopulation of all bacterial populations that is highly tolerant against all traditional antibiotics since the cells are dormant and antibiotics are designed to kill growing cells. Here, we show that MMC and cisplatin eradicate persister cells through a growth-independent mechanism, cross-linking DNA. We find both agents are effective against both planktonic cultures and highly robust biofilm cultures for a broad range of bacterial species, including commensal Escherichia coli K-12 as well as pathogenic species of E. coli, Staphylococcus aureus, and Pseudomonas aeruginosa. In certain approaches cisplatin is superior to MMC.
    Type: Application
    Filed: October 4, 2017
    Publication date: May 3, 2018
    Inventors: Thomas Wood, Brian Kwan, Nityananda Chowdhury
  • Patent number: 9801909
    Abstract: The present disclosure provides a method for killing persister cells with mitomycin C and/or cisplatin, or derivatives thereof. Recalcitrant infections are difficult to treat due to persister cells, a subpopulation of all bacterial populations that is highly tolerant against all traditional antibiotics since the cells are dormant and antibiotics are designed to kill growing cells. Here, we show that MMC and cisplatin eradicate persister cells through a growth-independent mechanism, cross-linking DNA. We find both agents are effective against both planktonic cultures and highly robust biofilm cultures for a broad range of bacterial species, including commensal Escherichia coli K-12 as well as pathogenic species of E. coli, Staphylococcus aureus, and Pseudomonas aeruginosa. In certain approaches cisplatin is superior to MMC.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: October 31, 2017
    Assignee: The Penn State Research Foundation
    Inventors: Thomas Wood, Brian Kwan, Nityananda Chowdhury
  • Publication number: 20160287630
    Abstract: The present disclosure provides a method for killing persister cells with mitomycin C and/or cisplatin, or derivatives thereof. Recalcitrant infections are difficult to treat due to persister cells, a subpopulation of all bacterial populations that is highly tolerant against all traditional antibiotics since the cells are dormant and antibiotics are designed to kill growing cells. Here, we show that MMC and cisplatin eradicate persister cells through a growth-independent mechanism, cross-linking DNA. We find both agents are effective against both planktonic cultures and highly robust biofilm cultures for a broad range of bacterial species, including commensal Escherichia coli K-12 as well as pathogenic species of E. coli, Staphylococcus aureus, and Pseudomonas aeruginosa. In certain approaches cisplatin is superior to MMC.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 6, 2016
    Inventors: Thomas Wood, Brian Kwan, Nityananda Chowdhury