Patents by Inventor Noah C. Welker

Noah C. Welker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220396785
    Abstract: Provided are methods and compositions for enriching cfDNA fragments from a biological fluid sample. A biological fluid sample, such as a urine sample, is collected and, in certain examples, pretreated before enrichment of the cfDNA. For the pretreatment, the sample is centrifuged to remove large cells and large cellular debris. As part of the pretreatment, the sample is also cleared of additional large cellular debris and excess volume by subjecting the sample to anion exchange chromatography and eluting bound DNA. Following any pretreatment of the sample, different concentrations an alcoholic solution are used—along with a mixture of DNA-binding particles and a chaotropic agent—to enrich the sample with cfDNA fragments having different sizes. For example, a biological sample can be enriched with small cfDNA fragments less than about 100 base pairs in length or large cfDNA fragments greater than about 100 base pairs in length.
    Type: Application
    Filed: April 8, 2022
    Publication date: December 15, 2022
    Applicant: MYRIAD WOMEN'S HEALTH, INC.
    Inventors: Noah C. Welker, Clement S. Chu
  • Publication number: 20220333188
    Abstract: High-fidelity, high-throughput nucleic acid sequencing enables healthcare practitioners and patients to gain insight into genetic variants and potential health risks. However, previous methods of nucleic acid sequencing often introduce sequencing errors (for example, mutations that arise during the preparation of a nucleic acid library, during amplification, or sequencing). Provided herein are methods and compositions for sequencing nucleic acids. Further provided are methods of identifying an error in a nucleic acid sequence.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 20, 2022
    Applicant: Myriad Women's Health, Inc.
    Inventors: Clement S. Chu, Noah C. Welker, Henry H. Lai
  • Patent number: 11339431
    Abstract: High-fidelity, high-throughput nucleic acid sequencing enables healthcare practitioners and patients to gain insight into genetic variants and potential health risks. However, previous methods of nucleic acid sequencing often introduce sequencing errors (for example, mutations that arise during the preparation of a nucleic acid library, during amplification, or sequencing). Provided herein are methods and compositions for sequencing nucleic acids. Further provided are methods of identifying an error in a nucleic acid sequence.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: May 24, 2022
    Assignee: Myriad Women's Health, Inc.
    Inventors: Clement S. Chu, Noah C. Welker, Henry H. Lai
  • Patent number: 11326158
    Abstract: Provided are methods and compositions for enriching cfDNA fragments from a biological fluid sample. A biological fluid sample, such as a urine sample, is collected and, in certain examples, pretreated before enrichment of the cfDNA. For the pretreatment, the sample is centrifuged to remove large cells and large cellular debris. As part of the pretreatment, the sample is also cleared of additional large cellular debris and excess volume by subjecting the sample to anion exchange chromatography and eluting bound DNA. Following any pretreatment of the sample, different concentrations an alcoholic solution are used—along with a mixture of DNA-binding particles and a chaotropic agent—to enrich the sample with cfDNA fragments having different sizes. For example, a biological sample can be enriched with small cfDNA fragments less than about 100 base pairs in length or large cfDNA fragments greater than about 100 base pairs in length.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: May 10, 2022
    Assignee: Myriad Women's Health, Inc.
    Inventors: Noah C. Welker, Clement S. Chu
  • Publication number: 20210024992
    Abstract: High-fidelity, high-throughput nucleic acid sequencing enables healthcare practitioners and patients to gain insight into genetic variants and potential health risks. However, previous methods of nucleic acid sequencing often introduce sequencing errors (for example, mutations that arise during the preparation of a nucleic acid library, during amplification, or sequencing). Provided herein are methods and compositions for sequencing nucleic acids. Further provided are methods of identifying an error in a nucleic acid sequence.
    Type: Application
    Filed: July 14, 2020
    Publication date: January 28, 2021
    Inventors: Clement S. Chu, Noah C. Welker, Henry H. Lai
  • Patent number: 10752946
    Abstract: High-fidelity, high-throughput nucleic acid sequencing enables healthcare practitioners and patients to gain insight into genetic variants and potential health risks. However, previous methods of nucleic acid sequencing often introduce sequencing errors (for example, mutations that arise during the preparation of a nucleic acid library, during amplification, or sequencing). Provided herein are methods and compositions for sequencing nucleic acids. Further provided are methods of identifying an error in a nucleic acid sequence.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: August 25, 2020
    Assignee: MYRIAD WOMEN'S HEALTH, INC.
    Inventors: Clement S. Chu, Noah C. Welker, Henry H. Lai
  • Publication number: 20190367905
    Abstract: Provided are methods and compositions for enriching cfDNA fragments from a biological fluid sample. A biological fluid sample, such as a urine sample, is collected and, in certain examples, pretreated before enrichment of the cfDNA. For the pretreatment, the sample is centrifuged to remove large cells and large cellular debris. As part of the pretreatment, the sample is also cleared of additional large cellular debris and excess volume by subjecting the sample to anion exchange chromatography and eluting bound DNA. Following any pretreatment of the sample, different concentrations an alcoholic solution are used—along with a mixture of DNA-binding particles and a chaotropic agent—to enrich the sample with cfDNA fragments having different sizes. For example, a biological sample can be enriched with small cfDNA fragments less than about 100 base pairs in length or large cfDNA fragments greater than about 100 base pairs in length.
    Type: Application
    Filed: July 12, 2019
    Publication date: December 5, 2019
    Applicant: MYRIAD WOMEN'S HEALTH, INC.
    Inventors: Noah C. WELKER, Clement S. CHU
  • Publication number: 20180346963
    Abstract: Methods for preparing concatenated nucleic acid molecules are provided. The methods herein include adaptors with complementary sequences for preparation of concatenated nucleic acid molecules, and methods of sequencing such nucleic acids.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 6, 2018
    Inventors: Noah C. Welker, Clement S. Chu
  • Publication number: 20180216176
    Abstract: High-fidelity, high-throughput nucleic acid sequencing enables healthcare practitioners and patients to gain insight into genetic variants and potential health risks. However, previous methods of nucleic acid sequencing often introduce sequencing errors (for example, mutations that arise during the preparation of a nucleic acid library, during amplification, or sequencing). Provided herein are methods and compositions for sequencing nucleic acids. Further provided are methods of identifying an error in a nucleic acid sequence.
    Type: Application
    Filed: January 17, 2018
    Publication date: August 2, 2018
    Inventors: Clement S. Chu, Noah C. Welker, Henry H. Lai
  • Publication number: 20150182601
    Abstract: The disclosure provided herein provides compositions and methods for producing siRNA. Also disclosed are compositions and methods for modulating the production of siRNA. Also disclosed herein are compositions and methods of treating a disease in a subject comprising administering a Dicer enzyme comprising a helicase domain or a mutated Dicer enzyme to a subject. Also disclosed herein are methods of screening for a candidate modulator that modulates siRNA production.
    Type: Application
    Filed: July 28, 2014
    Publication date: July 2, 2015
    Applicant: University of Utah Research Foundation
    Inventors: Noah C. Welker, Tuhin S. Maity, Phillip Joseph Aruscavage, JR., Brenda L. Bass
  • Publication number: 20130202578
    Abstract: The disclosure provided herein provides compositions and methods for producing siRNA. Also disclosed are compositions and methods for modulating the production of siRNA. Also disclosed herein are compositions and methods of treating a disease in a subject comprising administering a Dicer enzyme comprising a helicase domain or a mutated Dicer enzyme to a subject. Also disclosed herein are methods of screening for a candidate modulator that modulates siRNA production.
    Type: Application
    Filed: April 22, 2011
    Publication date: August 8, 2013
    Inventors: Noah C. Welker, Tuhin S. Maity, Phillip Joseph Aruscavage, JR., Brenda L. Bass