Patents by Inventor Noah F. Shroyer

Noah F. Shroyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10781425
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 22, 2020
    Assignee: Children's Hospital Medical Center
    Inventors: James M. Wells, Aaron M. Zorn, Jason R. Spence, Noah F. Shroyer
  • Publication number: 20200269230
    Abstract: An anaerobic chamber system to evaluate human enteric disease is described herein that can be used to test therapeutic components. In specific embodiments, the anaerobic chamber is used to determine the effect of one or more bacterial communities on ex vivo enteroid cultures. In one application, the anaerobic chamber system is used to determine the efficacy of therapeutic components in ameliorating human enteric disease using personalized medicine.
    Type: Application
    Filed: October 26, 2018
    Publication date: August 27, 2020
    Inventors: Tatiana Y. Fofanova, Jennifer Auchtung, Reid Laurence Wilson, Christopher Stewart, Joseph Petrosino, Robert Allen Britton, Jane Grande-Allen, Noah F. Shroyer, Mary K. Estes
  • Publication number: 20200190478
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Application
    Filed: October 11, 2019
    Publication date: June 18, 2020
    Inventors: James M. Wells, Aaron M. Zorn, Jason R. Spence, Noah F. Shroyer
  • Publication number: 20170362573
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 21, 2017
    Inventors: James M. Wells, Aaron M. Zorn, Jason R. Spence, Noah F. Shroyer
  • Patent number: 9719068
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: August 1, 2017
    Assignee: Children's Hospital Medical Center
    Inventors: James M. Wells, Jason R. Spence, Aaron M. Zorn, Noah F. Shroyer
  • Publication number: 20130137130
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal al development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Application
    Filed: May 6, 2011
    Publication date: May 30, 2013
    Applicant: CHILDREN'S HOSPITAL MEDICAL CENTER
    Inventors: James M. Wells, Jason R. Spence, Aaron M. Zorn, Noah F. Shroyer
  • Patent number: 8129353
    Abstract: The present invention provides nucleic acid and amino acid sequences of an ATP binding cassette transporter and mutated sequences thereof associated with macular degeneration. Methods of detecting agents that modify ATP-binding cassette transporter comprising combining purified ATP binding cassette transporter and at least one agent suspected of modifying the ATP binding cassette transporter an observing a change in at least one characteristic associated with ATP binding cassette transporter. Methods of detecting macular degeneration is also embodied by the present invention.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: March 6, 2012
    Assignees: Baylor College of Medicine, John Hopkins University, The United States of America as represented by the Secretary, Department of Health and Human Services, University of Utah Research Foundation
    Inventors: Rando Allikmets, Kent L. Anderson, Michael Dean, Mark Leppert, Richard A. Lewis, Yixin Li, James R. Lupski, Jeremy Nathans, Amir Rattner, Noah F. Shroyer, Nanda Singh, Philip Smallwood, Hui Sun
  • Publication number: 20120040456
    Abstract: The present invention provides nucleic acid and amino acid sequences of an ATP binding cassette transporter and mutated sequences thereof associated with macular degeneration. Methods of detecting agents that modify ATP-binding cassette transporter comprising combining purified ATP binding cassette transporter and at least one agent suspected of modifying the ATP binding cassette transporter an observing a change in at least one characteristic associated with ATP binding cassette transporter. Methods of detecting macular degeneration is also embodied by the present invention.
    Type: Application
    Filed: June 2, 2011
    Publication date: February 16, 2012
    Applicant: Baylor College of Medicine
    Inventors: Rando Allikmets, Kent L. Anderson, Michael Dean, Mark Leppert, Richard A. Lewis, Yixin Li, James R. Lupski, Jeremy Nathans, Amir Rattner, Noah F. Shroyer, Nanda Singh, Philip Smallwood, Hui Sun
  • Publication number: 20090029930
    Abstract: The present invention provides nucleic acid and amino acid sequences of an ATP binding cassette transporter and mutated sequences thereof associated with macular degeneration. Methods of detecting agents that modify ATP-binding cassette transporter comprising combining purified ATP binding cassette transporter and at least one agent suspected of modifying the ATP binding cassette transporter an observing a change in at least one characteristic associated with ATP binding cassette transporter. Methods of detecting macular degeneration is also embodied by the present invention.
    Type: Application
    Filed: December 11, 2006
    Publication date: January 29, 2009
    Applicants: Utah, University of, Research Foundation, Johns Hopkins University, Baylor College of Medicine, United States of America Department of Health and Human Services
    Inventors: Rando Allikmets, Kent L. Anderson, Michael Dean, Mark Leppert, Richard A. Lewis, Yixin Li, James R. Lupski, Jeremy Nathans, Amir Rattner, Noah F. Shroyer, Nanda Singh, Philip Smallwood, Hui Sun
  • Patent number: 7192579
    Abstract: The present invention provides nucleic acid and amino acid sequences of an ATP binding cassette transporter and mutated sequences thereof associated with macular degeneration. Methods of detecting agents that modify ATP-binding cassette transporter comprising combining purified ATP binding cassette transporter and at least one agent suspected of modifying the ATP binding cassette transporter an observing a change in at least one characteristic associated with ATP binding cassette transporter. Methods of detecting macular degeneration is also embodied by the present invention.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: March 20, 2007
    Assignees: Baylor College of Medicine, Johns Hopkins University, University of Utah Research Foundation, United States of America, Represented by the Secretary, Department of Health and Human Services, c/o National Institute of Health
    Inventors: Rando Allikmets, Kent L. Anderson, Michael Dean, Mark Leppert, Richard A. Lewis, Yixin Li, James R. Lupski, Jeremy Nathans, Amir Rattner, Noah F. Shroyer, Nanda Singh, Philip Smallwood, Hui Sun
  • Patent number: 7189511
    Abstract: The present invention provides nucleic acid and amino acid sequences of an ATP binding cassette transporter and mutated sequences thereof associated with macular degeneration. Methods of detecting agents that modify ATP-binding cassette transporter comprising combining purified ATP binding cassette transporter and at least one agent suspected of modifying the ATP binding cassette transporter an observing a change in at least one characteristic associated with ATP binding cassette transporter. Methods of detecting macular degeneration is also embodied by the present invention.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: March 13, 2007
    Assignees: Baylor College of Medicine, The United States of America as represented by the Department of Health and Human Services, University of Utah Research Foundation, John Hopkins University
    Inventors: Rando Allikmets, Kent L. Anderson, Michael Dean, Mark Leppert, Richard A. Lewis, Yixin Li, James R. Lupski, Jeremy Nathans, Amir Rattner, Noah F. Shroyer, Nanda Singh, Philip Smallwood, Hui Sun
  • Patent number: 7141420
    Abstract: The present invention provides nucleic acid and amino acid sequences of an ATP binding cassette transporter and mutated sequences thereof associated with macular degeneration. Methods of detecting agents that modify ATP-binding cassette transporter comprising combining purified ATP binding cassette transporter and at least one agent suspected of modifying the ATP binding cassette transporter an observing a change in at least one characteristic associated with ATP binding cassette transporter. Methods of detecting macular degeneration is also embodied by the present invention.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: November 28, 2006
    Assignees: University of Utah Research Foundation, Baylor College of Medicine, John Hopkins University, The United States of America as represented by the Department of Health and Human Services
    Inventors: Rando Allikmets, Kent L. Anderson, Michael Dean, Mark Leppert, Richard A. Lewis, Yixin Li, James R. Lupski, Jeremy Nathans, Amir Rattner, Noah F. Shroyer, Nanda Singh, Philip Smallwood, Hui Sun
  • Patent number: 6713300
    Abstract: The present invention provides nucleic acid and amino acid sequences of an ATP binding cassette transporter and mutated sequences thereof associated with macular degeneration. Methods of detecting agents that modify ATP-binding cassette transporter comprising combining purified ATP binding cassette transporter and at least one agent suspected of modifying the ATP binding cassette transporter an observing a change in at least one characteristic associated with ATP binding cassette transporter. Methods of detecting macular degeneration is also embodied by the present invention.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: March 30, 2004
    Assignees: University of Utah Research Foundation, Baylor College of Medicine, Johns Hopkins University, The United States of America as represented by the Department of Health and Human Services
    Inventors: Rando Allikmets, Kent L. Anderson, Michael Dean, Mark Leppert, Richard A. Lewis, Yixin Li, James R. Lupski, Jeremy Nathans, Amir Rattner, Noah F. Shroyer, Nanda Singh, Philip Smallwood, Hui Sun
  • Publication number: 20030170852
    Abstract: The present invention provides nucleic acid and amino acid sequences of an ATP binding cassette transporter and mutated sequences thereof associated with macular degeneration. Methods of detecting agents that modify ATP-binding cassette transporter comprising combining purified ATP binding cassette transporter and at least one agent suspected of modifying the ATP binding cassette transporter an observing a change in at least one characteristic associated with ATP binding cassette transporter. Methods of detecting macular degeneration is also embodied by the present invention.
    Type: Application
    Filed: January 3, 2003
    Publication date: September 11, 2003
    Inventors: Rando Allikmets, Kent L. Anderson, Michael Dean, Mark Leppert, Richard A. Lewis, Yixin Li, James R. Lupski, Jeremy Nathans, Amir Rattner, Noah F. Shroyer, Nanda Singh, Philip Smallwood, Hui Sun
  • Publication number: 20030170853
    Abstract: The present invention provides nucleic acid and amino acid sequences of an ATP binding cassette transporter and mutated sequences thereof associated with macular degeneration. Methods of detecting agents that modify ATP-binding cassette transporter comprising combining purified ATP binding cassette transporter and at least one agent suspected of modifying the ATP binding cassette transporter an observing a change in at least one characteristic associated with ATP binding cassette transporter. Methods of detecting macular degeneration is also embodied by the present invention.
    Type: Application
    Filed: January 3, 2003
    Publication date: September 11, 2003
    Inventors: Rando Allikmets, Kent L. Anderson, Michael Dean, Mark Leppert, Richard A. Lewis, Yixin Li, James R. Lupski, Jeremy Nathans, Amir Rattner, Noah F. Shroyer, Nanda Singh, Philip Smallwood, Hui Sun
  • Publication number: 20030162276
    Abstract: The present invention provides nucleic acid and amino acid sequences of an ATP binding cassette transporter and mutated sequences thereof associated with macular degeneration. Methods of detecting agents that modify ATP-binding cassette transporter comprising combining purified ATP binding cassette transporter and at least one agent suspected of modifying the ATP binding cassette transporter an observing a change in at least one characteristic associated with ATP binding cassette transporter. Methods of detecting macular degeneration is also embodied by the present invention.
    Type: Application
    Filed: January 10, 2003
    Publication date: August 28, 2003
    Inventors: Rando Allikmets, Kent L. Anderson, Michael Dean, Mark Leppert, Richard A. Lewis, Yixin Li, James R. Lupski, Jeremy Nathans, Amir Rattner, Noah F. Shroyer, Nanda Singh, Philip Smallwood, Hui Sun