Patents by Inventor Noah Patrick Allen

Noah Patrick Allen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250031425
    Abstract: A method of electric field-enhanced impurity diffusion includes obtaining a heterostructure including a substrate of Group-III-nitride semiconductor material, a source layer including a dopant positioned directly on the substrate, and a conductive cap layer positioned above the source layer, and applying a thermal annealing treatment to the heterostructure. An electric field gradient is established within the source layer and the cap layer for causing diffusion of an element from the substrate to the cap layer, and for causing diffusion of the dopant from the source layer to a former location of the element in the substrate thereby changing a conductivity and/or magnetic characteristic of the substrate.
    Type: Application
    Filed: October 4, 2024
    Publication date: January 23, 2025
    Inventors: Joel Basile Varley, Noah Patrick Allen, Clint Frye, Kyoung Eun Kweon, Vincenzo Lordi, Lars Voss
  • Patent number: 12142642
    Abstract: An apparatus includes a heterostructure including a substrate of Group-III-nitride material, a source layer including a dopant positioned on a surface of the substrate, and a conductive cap layer positioned on the source layer. A method of electric field-enhanced impurity diffusion includes obtaining a heterostructure including a substrate of Group-III-nitride semiconductor material, a source layer including a dopant positioned directly on the substrate, and a conductive cap layer positioned above the source layer, and applying a thermal annealing treatment to the heterostructure. An electric field gradient is established within the source layer and the cap layer for causing diffusion of an element from the substrate to the cap layer, and for causing diffusion of the dopant from the source layer to a former location of the element in the substrate thereby changing a conductivity and/or magnetic characteristic of the substrate.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: November 12, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Joel Basile Varley, Noah Patrick Allen, Clint Frye, Kyoung Eun Kweon, Vincenzo Lordi, Lars Voss
  • Publication number: 20240222541
    Abstract: Devices, methods and techniques related to photoconductive switches using diamond are disclosed. In one example aspect, a photoconductive apparatus includes a diamond layer positioned to receive a light. The diamond layer is doped with nitrogen. The apparatus also includes a first electrode coupled to the diamond layer to provide a first electrical contact for the diamond layer, and a second electrode coupled to the diamond layer to provide a second electrical contact for the diamond layer and configured to reflect the light back to the diamond layer. The first electrode and the second electrode are configured to establish an electric field across the diamond layer in response to receiving the light.
    Type: Application
    Filed: December 26, 2023
    Publication date: July 4, 2024
    Inventors: Joseph Devin Schneider, Lars F. Voss, Noah Patrick Allen, Caitlin Anne Chapin, Laura Leos, Alexander Peter Povilus, Sara Harrison, John Berns Lancaster
  • Publication number: 20240047516
    Abstract: An apparatus, in accordance with one embodiment, includes a superjunction device having a voltage sustaining layer formed of a semiconductor material and a dopant in the voltage sustaining layer. The dopant is for distributing an electric field within the voltage sustaining layer. The dopant is more concentrated along a sidewall of the voltage sustaining layer than toward a center of the voltage sustaining layer, the sidewall extending at least a portion of the distance between a top surface and a bottom surface of a voltage sustaining layer. Methods of electric field-enhanced dopant diffusion to form a superjunction device are also presented.
    Type: Application
    Filed: August 3, 2022
    Publication date: February 8, 2024
    Inventors: Vincenzo Lordi, Noah Patrick Allen, Qinghui Shao, Clint Duncan Frye, Kyoung Eun Kweon, Lars F. Voss, Joel Basile Varley
  • Publication number: 20210257463
    Abstract: An apparatus includes a heterostructure including a substrate of Group-III-nitride material, a source layer including a dopant positioned on a surface of the substrate, and a conductive cap layer positioned on the source layer. A method of electric field-enhanced impurity diffusion includes obtaining a heterostructure including a substrate of Group-III-nitride semiconductor material, a source layer including a dopant positioned directly on the substrate, and a conductive cap layer positioned above the source layer, and applying a thermal annealing treatment to the heterostructure. An electric field gradient is established within the source layer and the cap layer for causing diffusion of an element from the substrate to the cap layer, and for causing diffusion of the dopant from the source layer to a former location of the element in the substrate thereby changing a conductivity and/or magnetic characteristic of the substrate.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 19, 2021
    Inventors: Joel Basile Varley, Noah Patrick Allen, Clint Frye, Kyoung Eun Kweon, Vincenzo Lordi, Lars Voss