Patents by Inventor Noah WELKER

Noah WELKER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150846
    Abstract: The present disclosure relates to a laboratory execution system that provides for automation of laboratory processes. A centralized data management system may be dynamically updated and used to facilitate management of components of the laboratory execution system, such as an automation system and an analytics results management system that may facilitate complex analytical functions, such as synthesizing raw test data. Potential workflows include the detection of specific molecules of interest.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 9, 2024
    Applicant: MYRIAD WOMEN'S HEALTH, INC.
    Inventors: Jared Robert Maguire, Clement S. Chu, Imran Saeedul Haque, Eric Andrew Evans, Noah Welker
  • Patent number: 11932910
    Abstract: The present disclosure relates to methods for detecting unique genetic signatures derived from markers such as, for example, mutations, somatic or germ-line, in nucleic acids obtained from biological samples. The sensitivity of the methods provides for detection of mutations associated with a disease, e.g., cancer mutations, or with inherited disease, e.g., an autosomal recessive disease, in a noninvasive manner at ultra-low proportions of sequences carrying mutations to sequences carrying normal, e.g., non-cancer sequences, or a reference sequence, e.g., a human reference genome.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: March 19, 2024
    Assignee: Myriad Women's Health, Inc.
    Inventors: Jared Robert Maguire, Clement S. Chu, Imran Saeedul Haque, Eric Andrew Evans, Noah Welker
  • Publication number: 20240076750
    Abstract: The present disclosure relates to a laboratory execution system that provides for automation of laboratory processes. A centralized data management system may be dynamically updated and used to facilitate management of components of the laboratory execution system, such as an automation system and an analytics results management system that may facilitate complex analytical functions, such as synthesizing raw test data. Potential workflows include the detection of specific molecules of interest.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 7, 2024
    Applicant: Myriad Women's Health, Inc.
    Inventors: Jared Robert Maguire, Clement S. Chu, Imran Saeedul Haque, Eric Andrew Evans, Noah Welker
  • Publication number: 20230416729
    Abstract: High-fidelity, high-throughput nucleic acid sequencing enables healthcare practitioners and patients to gain insight into genetic variants and potential health risks. However, previous methods of nucleic acid sequencing often introduces sequencing errors (for example, mutations that arise during the preparation of a nucleic acid library, during amplification, or sequencing). Provided herein are sequencing adapters comprising a nondegenerate or variable length molecular barcode and compositions comprising a plurality of sequencing adapters, which can be useful for sequencing nucleic acids. Further provided are methods of using the sequencing adapters, including methods of sequencing nucleic acids, methods of identifying an error in a nucleic acid sequence, and methods of determining the number of nucleic acid molecules in a library.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 28, 2023
    Applicant: MYRIAD WOMEN'S HEALTH, INC.
    Inventors: Eric Andrew Evans, Imran Saeedul Haque, Kyle Beauchamp, Clement Chu, Carlo G. Artieri, Noah Welker
  • Publication number: 20230295716
    Abstract: The present disclosure relates to a laboratory execution system that provides for automation of laboratory processes. A centralized data management system may be dynamically updated and used to facilitate management of components of the laboratory execution system, such as an automation system and an analytics results management system that may facilitate complex analytical functions, such as synthesizing raw test data. Potential workflows include the detection of specific molecules of interest.
    Type: Application
    Filed: August 8, 2022
    Publication date: September 21, 2023
    Applicant: MYRIAD WOMEN'S HEALTH, INC.
    Inventors: Jared Robert Maguire, Clement S. Chu, Imran Saeedul Haque, Eric Andrew Evans, Noah Welker
  • Patent number: 11708574
    Abstract: High-fidelity, high-throughput nucleic acid sequencing enables healthcare practitioners and patients to gain insight into genetic variants and potential health risks. However, previous methods of nucleic acid sequencing often introduces sequencing errors (for example, mutations that arise during the preparation of a nucleic acid library, during amplification, or sequencing). Provided herein are sequencing adapters comprising a nondegenerate or variable length molecular barcode and compositions comprising a plurality of sequencing adapters, which can be useful for sequencing nucleic acids. Further provided are methods of using the sequencing adapters, including methods of sequencing nucleic acids, methods of identifying an error in a nucleic acid sequence, and methods of determining the number of nucleic acid molecules in a library.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: July 25, 2023
    Assignee: Myriad Women's Health, Inc.
    Inventors: Eric Andrew Evans, Imran Saeedul Haque, Kyle Beauchamp, Clement Chu, Carlo G. Artieri, Noah Welker
  • Publication number: 20230193247
    Abstract: Described herein are methods for enriching test samples for target nucleic acid molecules for further genetic screening. Methods may comprise isolating nucleic acid from test subjects, preparing nucleic acid libraries wherein the nucleic acid molecules are tagged or barcoded to identify sample of origin, determining fragment size distribution, determining abundance of a target nucleic acid population, calculating numerical offset values to determine amount of libraries to add for fragment size selection, performing fragment size selection, and performing a diagnostic assay on a sample enriched for a target nucleic acid.
    Type: Application
    Filed: May 18, 2021
    Publication date: June 22, 2023
    Applicant: Myriad Women's Health, Inc.
    Inventors: Clement Chu, Mark Theilmann, Noah Welker, Peter Grauman
  • Publication number: 20220290229
    Abstract: The present disclosure relates to methods for detecting unique genetic signatures derived from markers such as, for example, mutations, somatic or germ-line, in nucleic acids obtained from biological samples. The sensitivity of the methods provides for detection of mutations associated with a disease, e.g., cancer mutations, or with inherited disease, e.g., an autosomal recessive disease, in a noninvasive manner at ultra-low proportions of sequences carrying mutations to sequences carrying normal, e.g., non-cancer sequences, or a reference sequence, e.g., a human reference genome.
    Type: Application
    Filed: February 23, 2022
    Publication date: September 15, 2022
    Applicant: MYRIAD WOMEN'S HEALTH, INC.
    Inventors: Jared Robert Maguire, Clement S. Chu, Imran Saeedul Haque, Eric Andrew Evans, Noah Welker
  • Publication number: 20210348229
    Abstract: The present disclosure relates to methods for detecting unique genetic signatures derived from markers such as, for example, mutations, somatic or germ-line, in nucleic acids obtained from biological samples. The sensitivity of the methods provides for detection of mutations associated with a disease, e.g., cancer mutations, or with inherited disease, e.g., an autosomal recessive disease, in a noninvasive manner at ultra-low proportions of sequences carrying mutations to sequences carrying normal, e.g., non-cancer sequences, or a reference sequence, e.g., a human reference genome.
    Type: Application
    Filed: July 22, 2021
    Publication date: November 11, 2021
    Applicant: Myriad Women's Health, Inc.
    Inventors: Jared Robert MAGUIRE, Clement CHU, Imran Saeedul HAQUE, Eric Andrew EVANS, Noah WELKER
  • Publication number: 20200157622
    Abstract: The present disclosure relates to methods for detecting unique genetic signatures derived from markers such as, for example, mutations, somatic or germ-line, in nucleic acids obtained from biological samples. The sensitivity of the methods provides for detection of mutations associated with a disease, e.g., cancer mutations, or with inherited disease, e.g., an autosomal recessive disease, in a noninvasive manner at ultra-low proportions of sequences carrying mutations to sequences carrying normal, e.g., non-cancer sequences, or a reference sequence, e.g., a human reference genome.
    Type: Application
    Filed: February 7, 2020
    Publication date: May 21, 2020
    Applicant: MYRIAD WOMEN'S HEALTH, INC.
    Inventors: Jared Robert MAGUIRE, Clement CHU, Imran Saeedul HAQUE, Eric Andrew EVANS, Noah WELKER
  • Patent number: 10597717
    Abstract: The present disclosure relates to methods for detecting unique genetic signatures derived from markers such as, for example, mutations, somatic or germ-line, in nucleic acids obtained from biological samples. The sensitivity of the methods provides for detection of mutations associated with a disease, e.g., cancer mutations, or with inherited disease, e.g., an autosomal recessive disease, in a noninvasive manner at ultra-low proportions of sequences carrying mutations to sequences carrying normal, e.g., non-cancer sequences, or a reference sequence, e.g., a human reference genome.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: March 24, 2020
    Assignee: MYRIAD WOMEN'S HEALTH, INC.
    Inventors: Jared Robert Maguire, Clement Chu, Imran Saeedul Haque, Eric Andrew Evans, Noah Welker
  • Publication number: 20180201994
    Abstract: Capture probe libraries can be used to enrich a region of interest in a sequencing library for high-depth sequencing. The capture probes within the capture probe libraries often do not function in a predictable or uniform manner. Described herein are balanced capture probe libraries and methods of balancing capture probe libraries. A sequencing library can be enriched using balanced capture probe libraries, and the enriched sequencing library can be sequenced to obtain a sequencing depth closer to a desired sequencing depth.
    Type: Application
    Filed: January 17, 2018
    Publication date: July 19, 2018
    Inventors: Kyle BEAUCHAMP, Dale MUZZEY, Noah WELKER, Jared Robert MAGUIRE
  • Publication number: 20170355984
    Abstract: High-fidelity, high-throughput nucleic acid sequencing enables healthcare practitioners and patients to gain insight into genetic variants and potential health risks. However, previous methods of nucleic acid sequencing often introduces sequencing errors (for example, mutations that arise during the preparation of a nucleic acid library, during amplification, or sequencing). Provided herein are sequencing adapters comprising a nondegenerate or variable length molecular barcode and compositions comprising a plurality of sequencing adapters, which can be useful for sequencing nucleic acids. Further provided are methods of using the sequencing adapters, including methods of sequencing nucleic acids, methods of identifying an error in a nucleic acid sequence, and methods of determining the number of nucleic acid molecules in a library.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 14, 2017
    Inventors: Eric Andrew EVANS, Imran Saeedul HAQUE, Kyle BEAUCHAMP, Clement CHU, Carlo G. ARTIERI, Noah WELKER
  • Publication number: 20170275689
    Abstract: The present disclosure relates to methods for detecting unique genetic signatures derived from markers such as, for example, mutations, somatic or germ-line, in nucleic acids obtained from biological samples. The sensitivity of the methods provides for detection of mutations associated with a disease, e.g., cancer mutations, or with inherited disease, e.g., an autosomal recessive disease, in a noninvasive manner at ultra-low proportions of sequences carrying mutations to sequences carrying normal, e.g., non-cancer sequences, or a reference sequence, e.g., a human reference genome.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 28, 2017
    Inventors: Jared Robert MAGUIRE, Clement CHU, Imran Saeedul HAQUE, Eric Andrew EVANS, Noah WELKER