Patents by Inventor Noboru Harada

Noboru Harada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190206414
    Abstract: A coding technology that efficiently codes an input sound signal irrespective of the characteristics thereof and can obtain a decoded sound signal that sounds less artificial to a listener. A coding method codes an input sound signal frame by frame of a predetermined time segment by a selected coding processing from a plurality of types of coding processing in the frequency domain, the coding method makes it possible for a selection unit to select coding processing which is different from the coding processing of the preceding frame as coding processing of the present frame if at least one of the magnitude of the energy of high frequency components of the input sound signal of the preceding frame and the magnitude of the energy of high frequency components of the input sound signal of the present frame is smaller than or equal to a predetermined threshold value.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro MORIYA, Yutaka KAMAMOTO, Noboru HARADA
  • Patent number: 10332533
    Abstract: The present invention reduces encoding distortion in frequency domain encoding compared to conventional techniques, and obtains LSP parameters that correspond to quantized LSP parameters for the preceding frame and are to be used in time domain encoding from coefficients equivalent to linear prediction coefficients resulting from frequency domain encoding. When p is an integer equal to or greater than 1, a linear prediction coefficient sequence which is obtained by linear prediction analysis of audio signals in a predetermined time segment is represented as a[1], a[2], . . . , a[p], and ?[1], ?[2], . . . , ?[p] are a frequency domain parameter sequence derived from the linear prediction coefficient sequence a[1], a[2], . . . , a[p], an LSP linear transformation unit (300) determines the value of each converted frequency domain parameter ˜?[i] (i=1, 2, . . . , p) in a converted frequency domain parameter sequence ˜?[1], ˜?[2], . . . , ˜?[p] using the frequency domain parameter sequence ?[1], ?[2], . . .
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: June 25, 2019
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, The University of Tokyo
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada, Hirokazu Kameoka, Ryosuke Sugiura
  • Patent number: 10325609
    Abstract: A linear predictive coding apparatus is provided that performs linear predictive analysis using a pseudo correlation function signal sequence obtained by performing inverse Fourier transform regarding the ?1-th power of the absolute values of the frequency domain sample sequence corresponding to the time-series signal as a power spectrum to obtain coefficients transformable to linear predictive coefficients. The apparatus further adapts values of ? for a plurality of candidates for coefficients transformable to linear predictive coefficients stored in a code book and the coefficients transformable to linear predictive coefficients are obtained by the linear predictive analysis.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: June 18, 2019
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, The University of Tokyo
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada, Hirokazu Kameoka, Ryosuke Sugiura
  • Patent number: 10304472
    Abstract: A coding technology that efficiently codes an input sound signal irrespective of the characteristics thereof and can obtain a decoded sound signal that sounds less artificial to a listener. A coding method codes an input sound signal frame by frame of a predetermined time segment by a selected coding processing from a plurality of types of coding processing in the frequency domain, the coding method makes it possible for a selection unit to select coding processing which is different from the coding processing of the preceding frame as coding processing of the present frame if at least one of the magnitude of the energy of high frequency components of the input sound signal of the preceding frame and the magnitude of the energy of high frequency components of the input sound signal of the present frame is smaller than or equal to a predetermined threshold value.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: May 28, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10290310
    Abstract: In an encoding method that is expected to produce a smaller code amount out of a periodicity-based encoding method and a non-periodicity-based encoding method, the amount of code or an estimated value of the amount of code of an integer value sequence which is derived from an audio signal is obtained while adjusting gain. In the other encoding method, an integer value sequence obtained in this process is substituted to obtain the amount of code or an estimated value of the amount of code of the integer value sequence. The obtained code amounts or estimated values are compared to choose one of the encoding methods and the integer value sequence is encoded using the chosen encoding method to obtain and output an integer signal code.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: May 14, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10283132
    Abstract: In an encoding method that is expected to produce a smaller code amount out of a periodicity-based encoding method and a non-periodicity-based encoding method, the amount of code or an estimated value of the amount of code of an integer value sequence which is derived from an audio signal is obtained while adjusting gain. In the other encoding method, an integer value sequence obtained in this process is substituted to obtain the amount of code or an estimated value of the amount of code of the integer value sequence. The obtained code amounts or estimated values are compared to choose one of the encoding methods and the integer value sequence is encoded using the chosen encoding method to obtain and output an integer signal code.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: May 7, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10276186
    Abstract: A parameter determination device includes: a spectral envelope estimating portion performing estimation of a spectral envelope using a parameter ?0 specified in a predetermined method, regarding the ?0-th power of absolute values of a frequency domain sample sequence corresponding to a time-series signal as a power spectrum on the assumption that the parameter ?0 and a parameter ? are positive numbers; a whitened spectral sequence generating portion obtaining a whitened spectral sequence which is a sequence obtained by dividing the frequency domain sample sequence by the spectral envelope; and a parameter acquiring portion determining such a parameter ? that generalized Gaussian distribution with the parameter ? as a shape parameter approximates a histogram of the whitened spectral sequence.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: April 30, 2019
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, The University of Tokyo
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada, Hirokazu Kameoka, Ryosuke Sugiura
  • Publication number: 20190115036
    Abstract: An envelope sequence is provided that can improve approximation accuracy near peaks caused by the pitch period of an audio signal. A periodic-combined-envelope-sequence generation device according to the present invention takes, as an input audio signal, a time-domain audio digital signal in each frame, which is a predetermined time segment, and generates a periodic combined envelope sequence as an envelope sequence. The periodic-combined-envelope-sequence generation device according to the present invention comprises at least a spectral-envelope-sequence calculating part and a periodic-combined-envelope generating part. The spectral-envelope-sequence calculating part calculates a spectral envelope sequence of the input audio signal on the basis of time-domain linear prediction of the input audio signal.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 18, 2019
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro MORIYA, Yutaka KAMAMOTO, Noboru HARADA
  • Publication number: 20190096413
    Abstract: An encoder and a decoder are provided that are capable of reproducing a frequency-domain envelope sequence that provides high approximation accuracy around peaks caused by the pitch period of an audio signal by using a small amount of code. An encoder of the present invention comprises a periodic-combined-envelope generating part and a variable-length coding part. The periodic-combined-envelope generating part generates a periodic combined envelope sequence which is a frequency-domain sequence based on a spectral envelope sequence which is a frequency-domain sequence corresponding to a linear predictive coefficient code obtained from an input audio signal and on a frequency-domain period. The variable-length coding part encodes a frequency-domain sequence derived from the input audio signal. A decoder of the present invention comprises a periodic-combined-envelope generating part and a variable-length decoding part.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro MORIYA, Yutaka KAMAMOTO, Noboru HARADA
  • Publication number: 20190096414
    Abstract: An encoder and a decoder are provided that are capable of reproducing a frequency-domain envelope sequence that provides high approximation accuracy around peaks caused by the pitch period of an audio signal by using a small amount of code. An encoder of the present invention comprises a periodic-combined-envelope generating part and a variable-length coding part. The periodic-combined-envelope generating part generates a periodic combined envelope sequence which is a frequency-domain sequence based on a spectral envelope sequence which is a frequency-domain sequence corresponding to a linear predictive coefficient code obtained from an input audio signal and on a frequency-domain period. The variable-length coding part encodes a frequency-domain sequence derived from the input audio signal. A decoder of the present invention comprises a periodic-combined-envelope generating part and a variable-length decoding part.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro MORIYA, Yutaka KAMAMOTO, Noboru Harada
  • Patent number: 10224049
    Abstract: An encoding apparatus is an encoding apparatus for encoding a time-series signal for each of predetermined time sections in a frequency domain, wherein a parameter ? is a positive number, the parameter ? corresponding to a time-series signal is a shape parameter of generalized Gaussian distribution that approximates a histogram of a whitened spectral sequence, which is a sequence obtained by dividing a frequency domain sample sequence corresponding to the time-series signal by a spectral envelope estimated by regarding the ?-th power of absolute values of the frequency domain sample sequence as a power spectrum, and any of a plurality of parameters ? is selective or the parameter ? is variable for each of the predetermined time sections; and the encoding apparatus comprises an encoding portion encoding the time-series signal for each of the predetermined time sections by an encoding process with a configuration identified at least based on the parameter ? for each of the predetermined time sections.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: March 5, 2019
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, The University of Tokyo
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada, Takahito Kawanishi, Hirokazu Kameoka, Ryosuke Sugiura
  • Patent number: 10204633
    Abstract: An envelope sequence is provided that can improve approximation accuracy near peaks caused by the pitch period of an audio signal. A periodic-combined-envelope-sequence generation device according to the present invention takes, as an input audio signal, a time-domain audio digital signal in each frame, which is a predetermined time segment, and generates a periodic combined envelope sequence as an envelope sequence. The periodic-combined-envelope-sequence generation device according to the present invention comprises at least a spectral-envelope-sequence calculating part and a periodic-combined-envelope generating part. The spectral-envelope-sequence calculating part calculates a spectral envelope sequence of the input audio signal on the basis of time-domain linear prediction of the input audio signal.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: February 12, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10199046
    Abstract: An encoder includes a periodic-combined-envelope generating part and a variable-length coding part. The periodic-combined-envelope generating part generates a periodic combined envelope sequence which is a frequency-domain sequence based on a spectral envelope sequence which is a frequency-domain sequence corresponding to a linear predictive coefficient code obtained from an input audio signal and on a frequency-domain period. The variable-length coding part encodes a frequency-domain sequence derived from the input audio signal. A decoder includes a periodic-combined-envelope generating part and a variable-length decoding part. The periodic-combined-envelope generating part generates a periodic combined envelope sequence which is a frequency-domain sequence based on a spectral envelope sequence which is a frequency-domain sequence corresponding to a linear predictive coefficient code and on a frequency-domain period.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: February 5, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takehiro Moriya, Yutaka Kamamoto, Noboru Harada
  • Patent number: 10170130
    Abstract: An autocorrelation calculating part calculates autocorrelation Ro(i) from an input signal. A predictive coefficient calculating part performs linear predictive analysis using modified autocorrelation R?o(i) obtained by multiplying the autocorrelation Ro(i) by a coefficient wo(i). Here, a case is comprised where, for at least part of each order i, the coefficient wo(i) corresponding to each order i monotonically decreases as a value having positive correlation with a pitch gain in an input signal of a current frame or a past frame increases.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: January 1, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yutaka Kamamoto, Takehiro Moriya, Noboru Harada
  • Patent number: 10163450
    Abstract: An autocorrelation calculating part calculates autocorrelation Ro(i) from an input signal. A predictive coefficient calculating part performs linear predictive analysis using modified autocorrelation. R?o(i) obtained by multiplying the autocorrelation Ro(i) by a coefficient wo(i). Here, a case is comprised where, for at least part of each order i, the coefficient wo(i) corresponding to each order i monotonically decreases as a value having positive correlation with a pitch gain in an input signal of a current frame or a past frame increases.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: December 25, 2018
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yutaka Kamamoto, Takehiro Moriya, Noboru Harada
  • Patent number: 10147443
    Abstract: A matching device includes a matching unit that judges, based on a first sequence of parameters ? corresponding to each of at least one time-series signal of a predetermined time length which makes up a first signal and a second sequence of the parameters ? corresponding to each of at least one time-series signal of the predetermined time length which makes up a second signal, the degree of match between the first signal and the second signal and/or whether or not the first signal and the second signal match with each other.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: December 4, 2018
    Assignees: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, The University of Tokyo
    Inventors: Takehiro Moriya, Takahito Kawanishi, Yutaka Kamamoto, Noboru Harada, Hirokazu Kameoka, Ryosuke Sugiura
  • Patent number: 10134420
    Abstract: An autocorrelation calculating part calculates autocorrelation Ro(i) from an input signal. A predictive coefficient calculating part performs linear predictive analysis using modified autocorrelation R?o(i) obtained by multiplying the autocorrelation Ro(i) by a coefficient wo(i). Here, it is assumed that a case where, for at least part of each order i, the coefficient wo(i) corresponding to each order i monotonically increases as a value having negative correlation with a fundamental frequency of an input signal in a current frame or a past frame increases and a case where the coefficient wo(i) monotonically decreases as a value having positive correlation with a pitch gain in a current frame or a past frame increases, are included.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: November 20, 2018
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yutaka Kamamoto, Takehiro Moriya, Noboru Harada
  • Patent number: 10134419
    Abstract: An autocorrelation calculating part calculates autocorrelation Ro(i) from an input signal. A predictive coefficient calculating part performs linear predictive analysis using modified autocorrelation R?o(i) obtained by multiplying the autocorrelation Ro(i) by a coefficient wo(i). Here, it is assumed that a case where, for at least part of each order i, the coefficient wo(i) corresponding to each order i monotonically increases as a value having negative correlation with a fundamental frequency of an input signal in a current frame or a past frame increases and a case where the coefficient wo(i) monotonically decreases as a value having positive correlation with a pitch gain in a current frame or a past frame increases, are included.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: November 20, 2018
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yutaka Kamamoto, Takehiro Moriya, Noboru Harada
  • Publication number: 20180330741
    Abstract: A technology of accurately coding and decoding coefficients which are convertible into linear prediction coefficients even for a frame in which the spectrum variation is great while suppressing an increase in the code amount as a whole is provided. A coding device includes: a first coding unit that obtains a first code by coding coefficients which are convertible into linear prediction coefficients of more than one order; and a second coding unit that obtains a second code by coding at least quantization errors of the first coding unit if (A-1) an index Q commensurate with how high the peak-to-valley height of a spectral envelope is, the spectral envelope corresponding to the coefficients which are convertible into the linear prediction coefficients of more than one order, is larger than or equal to a predetermined threshold value Th1 and/or (B-1) an index Q? commensurate with how short the peak-to-valley height of the spectral envelope is, is smaller than or equal to a predetermined threshold value Th1?.
    Type: Application
    Filed: July 25, 2018
    Publication date: November 15, 2018
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Takehiro MORIYA, Yutaka KAMAMOTO, Noboru HARADA
  • Patent number: 10115413
    Abstract: An autocorrelation calculating part calculates autocorrelation Ro(i) from an input signal. A predictive coefficient calculating part performs linear predictive analysis using modified autocorrelation R?o(i) obtained by multiplying the autocorrelation Ro(i) by a coefficient wo(i). Here, it is assumed that a case where, for at least part of each order i, the coefficient wo(i) corresponding to each order i monotonically increases as a value having negative correlation with a fundamental frequency of an input signal in a current frame or a past frame increases and a case where the coefficient wo(i) monotonically decreases as a value having positive correlation with a pitch gain in a current frame or a past frame increases, are included.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: October 30, 2018
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yutaka Kamamoto, Takehiro Moriya, Noboru Harada