Patents by Inventor Noboru Ichinose

Noboru Ichinose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9117974
    Abstract: A light emitting element that includes a Ga2O3 substrate; an AlxGa1-xN buffer layer (0?×?1) formed on the Ga2O3 substrate; an n-GaN layer formed on the AlxGa1-xN buffer layer; an p-GaN layer formed on a portion of the n-GaN layer; an n-electrode formed on a portion of the n-GaN layer; and an p-electrode formed on the p-GaN layer.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: August 25, 2015
    Assignee: KOHA CO., LTD.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Publication number: 20140306237
    Abstract: A light emitting element that includes a Ga2O3 substrate; an AlxGa1?xN buffer layer (0?×?1) formed on the Ga2O3 substrate; an n-GaN layer formed on the AlxGa1?xN buffer layer; an p-GaN layer formed on a portion of the n-GaN layer; an n-electrode formed on a portion of the n-GaN layer; and an p-electrode formed on the p-GaN layer.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Patent number: 8791466
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlXInYGa(1-X-Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 29, 2014
    Assignee: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Patent number: 8747553
    Abstract: A method of growing a p-type thin film of ?-Ga2O3 includes preparing a substrate including a ?-Ga2O3 single crystal, and growing a p-type thin film of ?-Ga2O3 on the substrate. The p-type thin film is grown in a manner that Ga in the thin film is replaced by a p-type dopant selected from H, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Pb.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: June 10, 2014
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Patent number: 8674399
    Abstract: A light-emitting element includes a ?-Ga2O3 substrate, a GaN-based semiconductor layer formed on the ?-Ga2O3 substrate, and a double-hetero light-emitting layer formed on the GaN-based semiconductor layer.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: March 18, 2014
    Assignee: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Publication number: 20130248902
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlXInYGa(1-X-Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Application
    Filed: May 24, 2013
    Publication date: September 26, 2013
    Applicant: KOHA CO., LTD.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Patent number: 8450747
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlXInYGa(1-X-Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 28, 2013
    Assignee: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Publication number: 20120304918
    Abstract: A method of growing a p-type thin film of ?-Ga2O3 includes preparing a substrate including a ?-Ga2O3 single crystal, and growing a p-type thin film of ?-Ga2O3 on the substrate. The p-type thin film is grown in a manner that Ga in the thin film is replaced by a p-type dopant selected from H, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Pb.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Patent number: 8262796
    Abstract: A thin-film single crystal growing method includes preparing a substrate, irradiating an excitation beam on a metallic target made of a pure metal or an alloy in a predetermined atmosphere, and combining chemical species including any of atoms, molecules, and ions released from the metallic target by irradiation of the excitation beam with atoms contained in the predetermined atmosphere to form a thin film on the substrate.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: September 11, 2012
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Patent number: 7977673
    Abstract: To provide a semiconductor layer in which a GaN system epitaxial layer having high crystal quality can be obtained. The semiconductor layer includes a ?-Ga2O3 substrate 1 made of a ?-Ga2O3 single crystal, a GaN layer 2 formed by subjecting a surface of the ?-Ga2O3 substrate 1 to nitriding processing, and a GaN growth layer 3 formed on the GaN layer 2 through epitaxial growth by utilizing an MOCVD method. Since lattice constants of the GaN layer 2 and the GaN growth layer 3 match each other, and the GaN growth layer 3 grows so as to succeed to high crystalline of the GaN layer 2, the GaN growth layer 3 having high crystalline is obtained.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: July 12, 2011
    Assignee: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Patent number: 7800105
    Abstract: To provide a Ga2O3 compound semiconductor device in which a Ga2O3 system compound is used as a semiconductor, which has an electrode having ohmic characteristics adapted to the Ga2O3 system compound, and which can make a heat treatment for obtaining the ohmic characteristics unnecessary. An n-side electrode 20 including at least a Ti layer is formed on a lower surface of an n-type ?-Ga2O3 substrate 2 by utilizing a PLD method. This n-side electrode 20 has ohmic characteristics at 25° C. The n-side electrode 20 may have two layer including a Ti layer and an Au layer, three layers including a Ti layer, an Al layer and an Au layer, or four layers including a Ti layer, an Al layer, a Ni layer and an Au layer.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: September 21, 2010
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Publication number: 20100229789
    Abstract: A thin-film single crystal growing method includes preparing a substrate, irradiating an excitation beam on a metallic target made of a pure metal or an alloy in a predetermined atmosphere, and combining chemical species including any of atoms, molecules, and ions released from the metallic target by irradiation of the excitation beam with atoms contained in the predetermined atmosphere to form a thin film on the substrate.
    Type: Application
    Filed: March 15, 2010
    Publication date: September 16, 2010
    Applicant: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki
  • Patent number: 7727865
    Abstract: To provide a method of controlling a conductivity of a Ga2O3 system single crystal with which a conductive property of a ?-Ga2O3 system single crystal can be efficiently controlled. The light emitting element includes an n-type ?-Ga2O3 substrate, and an n-type ?-AlGaO3 cladding layer, an active layer, a p-type ?-AlGaO3 cladding layer and a p-type ?-Ga2O3 contact layer which are formed in order on the n-type ?-Ga2O3 substrate. A resistivity is controlled to fall within the range of 2.0×10?3 to 8×102 ?cm and a carrier concentration is controlled to fall within the range of 5.5×1015 to 2.0×1019/cm3 by changing a Si concentration within the range of 1×10?5 to 1 mol %.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: June 1, 2010
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Patent number: 7713353
    Abstract: A method for growing a ?-Ga2O3 single includes preparing a ?-Ga2O3 seed crystal and growing the ?-Ga2O3 single crystal from the ?-Ga2O3 seed crystal in a predetermined direction.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: May 11, 2010
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Publication number: 20100038652
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlxInyGa(1?X?Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Application
    Filed: October 23, 2009
    Publication date: February 18, 2010
    Applicant: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Patent number: 7629615
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlXInYGa(1-X-Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: December 8, 2009
    Assignee: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Patent number: 7608472
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlXInYGa(1-X-Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: October 27, 2009
    Assignee: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Publication number: 20080265264
    Abstract: A method for growing a ?-Ga2O3 single includes preparing a ?-Ga2O3 seed crystal and growing the ?-Ga2O3 single crystal from the ?-Ga2O3 seed crystal in a predetermined direction.
    Type: Application
    Filed: June 12, 2008
    Publication date: October 30, 2008
    Applicant: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Publication number: 20080237607
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlXInYGa(1-X-Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Application
    Filed: June 6, 2008
    Publication date: October 2, 2008
    Applicant: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Patent number: 7393411
    Abstract: A method for growing a ?-Ga2O3 single crystal hardly cracking and having a weakened twinning tendency and an improved crystallinity, a method for growing a thin-film single crystal with high quality, a GazO3 light-emitting device capable of emitting a light in the ultraviolet region, and its manufacturing method are disclosed. In an infrared-heating single crystal manufacturing system, a seed crystal and polycrystalline material are rotated in mutually opposite directions and heated, and a ?-Ga2O3 single crystal is grown in one direction selected from among the a-axis <100> direction, the b-axis <010> direction, and the c-axis <001> direction. A thin film of a ?-Ga2O3 single crystal is formed by PLD. A laser beam is applied to a target to excite atoms constituting the target Ga atoms are released from the target by thermal and photochemical actions. The free Ga atoms are bonded to radicals in the atmosphere in the chamber.
    Type: Grant
    Filed: February 16, 2004
    Date of Patent: July 1, 2008
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora