Patents by Inventor Nobuaki Ishii

Nobuaki Ishii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11777082
    Abstract: A negative electrode material for lithium ion secondary batteries, including composite material particles containing nanosilicon particles having a 50% particle diameter (Dn50) of 5 to 100 nm in a number-based cumulative particle size distribution of primary particles, graphite particles and an amorphous carbon material; the composite material particles containing the nanosilicon particles at a content of 30 to 60 mass % or less, and the amorphous carbon material at a content of 30 to 60 mass % or less; the composite material particles having a 90% particle diameter (DV90) in the volume-based cumulative particle size distribution of 10.0 to 40.0 ?m, a BET specific surface area of 1.0 to 5.0 m2/g, and an exothermic peak temperature in DTA measurement of 830° C. to 950° C. Also disclosed is a paste for negative electrodes, a negative electrode sheet, a lithium ion secondary battery and a method for manufacturing the negative electrode material.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 3, 2023
    Assignees: Showa Denko K.K., Umicore
    Inventors: Yasunari Otsuka, Nobuaki Ishii, Nicolas Marx, Stijn Put
  • Patent number: 11588148
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: February 21, 2023
    Assignees: Umicore, Showa Denko K.K.
    Inventors: Stijn Put, Dirk Van Genechten, Jan Gilleir, Nicolas Marx, Arihiro Muto, Nobuaki Ishii, Masataka Takeuchi
  • Publication number: 20220209223
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Application
    Filed: February 16, 2022
    Publication date: June 30, 2022
    Inventors: Stijn PUT, Dirk VAN GENECHTEN, Jan GILLEIR, Nicolas MARX, Arihiro MUTO, Nobuaki ISHII, Masataka TAKEUCHI
  • Publication number: 20220056295
    Abstract: [Problem] To provide an electroconductive ink suitable for an inexpensive carbon wiring substrate having a wide strain sensing range, and a carbon wiring substrate in which the electroconductive ink is used. [Solution] An electroconductive ink characterized by including a carbonaceous electroconductive material (A), a binder resin (B) including a cellulose compound (B1) and a poly N-vinyl compound (B2), and a solvent (C), the electroconductive ink including 0.5-23 parts by mass of the binder resin (B) with respect to 100 parts by mass of the carbonaceous electroconductive material (A), the mass blending ratio of the cellulose compound (B1) and the poly N-vinyl compound (B2) being 80:20 to 40:60, and the solvent (C) including water (C1). A carbon wiring substrate having a wiring pattern formed using the electroconductive ink.
    Type: Application
    Filed: September 13, 2019
    Publication date: February 24, 2022
    Applicants: OSAKA UNIVERSITY, SHOWA DENLO K.K.
    Inventors: Teppei ARAKI, Tsuyoshi SEKITANI, Jun KUWAHARA, Nobuaki ISHII, Hideki OHATA
  • Patent number: 11031587
    Abstract: A negative electrode material for a lithium ion battery, including silicon-containing particles, artificial graphite particles and a carbonaceous material, wherein at least part of the silicon-containing particles, the artificial graphite particles and the carbonaceous material form composite particles; wherein the silicon-containing particles are silicon particles having a SiOx (0<x?2) layer on the particle surface, having an oxygen content of 1.0 mass % or more and 18.0 mass % or less, and mainly containing particles having a primary particle diameter of 200 nm or less; wherein the artificial graphite particles are non-flaky artificial graphite particles and have a 50% particle diameter in a volume-based cumulative particle size distribution, D50, of 1.0 ?m or more and 15.0 ?m or less. Also disclosed is a lithium-ion battery including a negative electrode using the negative electrode material.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: June 8, 2021
    Assignees: SHOWA DENKO K. K., UMICORE
    Inventors: Nobuaki Ishii, Arihiro Muto, Yasunari Otsuka, Masataka Takeuchi, Dirk Van Genechten, Stijn Put
  • Publication number: 20200295359
    Abstract: A negative electrode material for lithium ion secondary batteries, including composite material particles containing nanosilicon particles having a 50% particle diameter (Dn50) of 5 to 100 nm in a number-based cumulative particle size distribution of primary particles, graphite particles and an amorphous carbon material; the composite material particles containing the nanosilicon particles at a content of 30 to 60 mass % or less, and the amorphous carbon material at a content of 30 to 60 mass % or less; the composite material particles having a 90% particle diameter (DV90) in the volume-based cumulative particle size distribution of 10.0 to 40.0 ?m, a BET specific surface area of 1.0 to 5.0 m2/g, and an exothermic peak temperature in DTA measurement of 830° C. to 950° C. Also disclosed is a paste for negative electrodes, a negative electrode sheet, a lithium ion secondary battery and a method for manufacturing the negative electrode material.
    Type: Application
    Filed: September 18, 2018
    Publication date: September 17, 2020
    Applicants: SHOWA DENKO K.K., UMICORE
    Inventors: Yasunari OTSUKA, Nobuaki ISHII, Nicolas MARX, Stijn PUT
  • Publication number: 20190363348
    Abstract: A negative electrode material for a lithium-ion secondary battery including: Composite (A) having Dv50 of 3.0 ?m or more and 20.0 ?m or less; and including: Particles (A1) and (A2) and Carbonaceous material (A3) as defined herein; a first graphite-containing substance (B) having Dv50 of 5.0 ?m or more and 20.0 ?m or less; and a second graphite-containing substance (C) having Dv50 of 1.0 ?m or more and 10.0 ?m or less. The Dv50 of the graphite-containing substance (B) is larger than that of the graphite-containing substance (C) by 4.0 ?m or more. Also disclosed is a negative electrode sheet and a lithium-ion secondary battery including the negative electrode material.
    Type: Application
    Filed: September 8, 2017
    Publication date: November 28, 2019
    Applicants: SHOWA DENKO K.K., UMICORE
    Inventors: Takayuki KURITA, Yasunari OTSUKA, Nobuaki ISHII
  • Patent number: 10483529
    Abstract: Composite powder for use in an anode of a lithium ion battery, whereby the particles of the composite powder comprise silicon-based domains in a matrix, whereby the individual silicon-based domains are either free silicon-based domains that are not or not completely embedded in the matrix or are fully embedded silicon-based domains that are completely surrounded by the matrix, whereby the percentage of free silicon-based domains is lower than or equal to 4 weight % of the total amount of Si in metallic or oxidized state in the composite powder.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: November 19, 2019
    Assignees: UMICORE, SHOWA DENKO K.K.
    Inventors: Stijn Put, Dirk Van Genechten, Kris Driesen, Jin Hu, Yvan Strauven, Arihiro Muto, Nobuaki Ishii, Masataka Takeuchi
  • Publication number: 20190334162
    Abstract: A granular composite material, containing: particles (A) each formed of a substance which contains an element capable of intercalating and deintercalating lithium ions and is free of graphite; particles (B) each formed of a substance which contains graphite; carbon fibers (C); a polymer (D) containing a polysaccharide having an unsubstituted or substituted glucopyranose ring or a derivative thereof; and a solid electrolyte (E) containing a linear or branched polyether or a derivative thereof; a negative electrode obtained by laminating an electrode layer containing the granular composite material on a current collector; a method for producing the negative electrode; and a lithium ion secondary battery containing the negative electrode.
    Type: Application
    Filed: December 6, 2017
    Publication date: October 31, 2019
    Applicant: SHOWA DENKO K.K.
    Inventors: Takayuki KURITA, Masataka TAKEUCHI, Nobuaki ISHII
  • Patent number: 10109848
    Abstract: The present invention relates to a negative electrode material for a lithium ion battery, made of a composite material comprising silicon-containing particles, artificial graphite particles and a carbon coating layer, wherein the silicon-containing particles are silicon particles having a SiOx layer (0<x?2) on a particle surface, have an oxygen content ratio of 1 mass % or more and 18 mass % or less, and mainly comprise particles having a primary particle diameter of 200 nm or less; and the artificial graphite particles have a scale-like shape. By using the negative electrode material, a lithium ion battery having a high capacitance and excellent charge-discharge cycle characteristics can be produced.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: October 23, 2018
    Assignees: SHOWA DENKO K.K., UMICORE
    Inventors: Hirokazu Murata, Masataka Takeuchi, Nobuaki Ishii, Sam Siau, Nicolas Marx, Stijn Put
  • Publication number: 20180287141
    Abstract: A negative electrode for a lithium ion secondary battery including a laminated electrode layer and collector obtained by: mixing particles (A) composed of a substance including an element capable of intercalating and deintercalating lithium ions and containing no graphite, particles (B) composed of graphite, carbonaceous fibers (C), and a polymer (D) containing a polysaccharide and having a specified viscosity to obtain a granular composite in which each of particles (A) and each of carbonaceous fibers (C) contact with each other through the polymer (D) to be integrated, thereby forming a substructure (S), at least part of the particles (B) is covered with the substructure (S), and each of the particles (B) has contact with each other through the substructure (S); mixing a liquid medium, the granular composite and a binder to obtain slurry or paste; and allowing the slurry or the paste to adhere to the collector.
    Type: Application
    Filed: October 1, 2016
    Publication date: October 4, 2018
    Applicant: SHOWA DENKO K.K.
    Inventors: Takayuki KURITA, Akira MATSUO, Nobuaki ISHII
  • Publication number: 20180190975
    Abstract: A negative electrode material for a lithium ion battery, including silicon-containing particles, artificial graphite particles and a carbonaceous material, wherein at least part of the silicon-containing particles, the artificial graphite particles and the carbonaceous material form composite particles; wherein the silicon-containing particles are silicon particles having a SiOx (0<x?2) layer on the particle surface, having an oxygen content of 1.0 mass % or more and 18.0 mass % or less, and mainly containing particles having a primary particle diameter of 200 nm or less; wherein the artificial graphite particles are non-flaky artificial graphite particles and have a 50% particle diameter in a volume-based cumulative particle size distribution, D50, of 1.0 ?m or more and 15.0 ?m or less. Also disclosed is a lithium-ion battery including a negative electrode using the negative electrode material.
    Type: Application
    Filed: July 1, 2016
    Publication date: July 5, 2018
    Applicants: SHOWA DENKO K. K., UMICORE
    Inventors: Nobuaki ISHII, Arihiro MUTO, Yasunari OTSUKA, Masataka TAKEUCHI, Dirk VAN GENECHTEN, Stijn PUT
  • Publication number: 20180013137
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Application
    Filed: October 15, 2015
    Publication date: January 11, 2018
    Inventors: Stijn PUT, Dirk VAN GENECHTEN, Jan GILLEIR, Nicolas MARX, Arihiro MUTO, Nobuaki ISHII, Masataka TAKEUCHI
  • Publication number: 20170352877
    Abstract: Composite powder for use in an anode of a lithium ion battery, whereby the particles of the composite powder comprise silicon-based domains in a matrix, whereby the individual silicon-based domains are either free silicon-based domains that are not or not completely embedded in the matrix or are fully embedded silicon-based domains that are completely surrounded by the matrix, whereby the percentage of free silicon-based domains is lower than or equal to 4 weight % of the total amount of Si in metallic or oxidized state in the composite powder.
    Type: Application
    Filed: December 11, 2015
    Publication date: December 7, 2017
    Inventors: Stijn PUT, Dirk VAN GENECHTEN, Kris DRIESEN, Jin HU, Yvan STRAUVEN, Arihiro MUTO, Nobuaki ISHII, Masataka TAKEUCHI
  • Patent number: 9768447
    Abstract: A method for producing a negative electrode material for lithium ion secondary battery which includes: pressing a mixed liquid comprising particles (B) containing an element capable of occluding/releasing lithium ions, carbon nanotubes (C) of which not less than 95% by number have a fiber diameter of not less than 5 nm and not more than 40 nm, and water into a pulverizing nozzle of a high-pressure dispersing device to obtain a paste or slurry; drying the paste or slurry into a powder; and mixing the powder and carbon particles (A). A negative electrode material for lithium ion secondary battery including carbon particles (A); and flocculates in which particles (B) containing an element capable of occluding/releasing lithium ions and carbon nanotubes (C) of which not less than 95% by number has a fiber diameter of not less than 5 nm and not more than 40 nm are uniformly composited.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: September 19, 2017
    Assignee: SHOWA DENKO K.K.
    Inventors: Takeshi Nakamura, Nobuaki Ishii, Yuta Hirano
  • Publication number: 20170256791
    Abstract: A negative electrode material for lithium ion secondary batteries, the negative electrode material including particles (A) containing an element capable of occluding/releasing lithium ions other than a carbon element; graphite particles (B) capable of occluding/releasing lithium ions and having a median value of not smaller than 1.4 and not larger than 3.0 in a number-based distribution of aspect ratios of primary particles and carbon fibers (C); wherein a three dimensional web structure is formed from one or more carbon fibers (C), the particles (A) are fusion-bonded to the structure, and the structure is fusion-bonded to at least a part of a surface of the graphite particle (B). Also disclosed is a lithium ion secondary battery obtained using the negative electrode material.
    Type: Application
    Filed: July 27, 2015
    Publication date: September 7, 2017
    Applicant: SHOWA DENKO K.K.
    Inventors: Takayuki KURITA, Akira MATSUO, Nobuaki ISHII
  • Patent number: 9583760
    Abstract: A negative electrode material for lithium ion batteries is obtained by a method which includes: mixing carbon particles (B) such as graphite particles, particles (A), such as Si particles, containing an element capable of occluding and releasing lithium ions, a carbon precursor such as sucrose, a carboxylic acid compound such as acetic acid, and a liquid medium such as water or isopropyl alcohol to prepare a slurry; drying and solidifying the slurry; and heat-treating the resulting solidified material to carbonize the carbon precursor. A lithium ion battery is obtained using this negative electrode material.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: February 28, 2017
    Assignee: SHOWA DENKO K.K.
    Inventors: Arihiro Mutoh, Yoshiaki Ikenoue, Masashi Sakaguchi, Hirokazu Murata, Masataka Takeuchi, Nobuaki Ishii
  • Patent number: 9543583
    Abstract: Particles (A) including an element capable of intercalating and deintercalating lithium ions, carbon particles (B) capable of intercalating and deintercalating lithium ions, multi-walled carbon nanotubes (C), carbon nanofibers (D) and optionally electrically conductive carbon particles (E) are mixed in the presence of shear force to obtain a composite electrode material. A lithium ion secondary battery is obtained using the above composite electrode material.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: January 10, 2017
    Assignee: SHOWA DENKO K.K.
    Inventors: Takeshi Nakamura, Nobuaki Ishii, Masataka Takeuchi
  • Patent number: 9397340
    Abstract: Provided is composite carbon fibers comprising multi-walled carbon nanotubes wherein 99% by number or more of the multi-walled carbon nanotubes have a fiber diameter of not less than 5 nm and not more than 40 nm, carbon particles having a primary particle diameter of not less than 20 nm and not more than 100 nm and graphitized carbon nanofibers wherein 99% by number or more of the graphitized carbon nanofibers have a fiber diameter of not less than 50 nm and not more than 300 nm, wherein the multi-walled carbon nanotubes are homogeneously dispersed between the graphitized carbon nanofibers and the carbon particles.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: July 19, 2016
    Assignee: SHOWA DENKO K.K.
    Inventors: Ryuji Yamamoto, Takeshi Nakamura, Nobuaki Ishii, Yuta Hirano
  • Publication number: 20160190552
    Abstract: The present invention relates to a negative electrode material for a lithium ion battery, made of a composite material comprising silicon-containing particles, artificial graphite particles and a carbon coating layer, wherein the silicon-containing particles are silicon particles having a SiOx layer (0<x?2) on a particle surface, have an oxygen content ratio of 1 mass % or more and 18 mass % or less, and mainly comprise particles having a primary particle diameter of 200 nm or less; and the artificial graphite particles have a scale-like shape. By using the negative electrode material, a lithium ion battery having a high capacitance and excellent charge-discharge cycle characteristics can be produced.
    Type: Application
    Filed: August 4, 2014
    Publication date: June 30, 2016
    Applicants: SHOWA DENKO K.K., UMICORE
    Inventors: Hirokazu MURATA, Masataka TAKEUCHI, Nobuaki ISHII, Sam SIAU, Nicolas MARX, Stijn PUT