Patents by Inventor Nobuhide Kamata

Nobuhide Kamata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10078335
    Abstract: Ray tracing can be used to detect hidden obstacles in an external environment of a vehicle. An outbound sensor signal can be transmitted into an external environment of the vehicle. The outbound sensor signal can be a LIDAR sensor signal. If a return sensor signal is not received for the outbound sensor signal, it can be determined whether an obstacle is located along a projected path of the outbound sensor signal. Such a determination can be made using one or more maps, such as a terrain map and/or a static obstacle map. Responsive to determining that an obstacle is located along the projected path of the outbound sensor signal, a driving maneuver for the vehicle relative to the obstacle can be determined. The vehicle can be caused to implement the determined driving maneuver.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: September 18, 2018
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Xue Mei, Katsuhiro Sakai, Nobuhide Kamata
  • Patent number: 10037037
    Abstract: System, methods, and other embodiments described herein relate to autonomously controlling a vehicle according to a trajectory plan. In one embodiment, a method includes updating, upon traveling over at least a portion of a current segment of a roadway, the trajectory plan for a subsequent segment of the roadway by setting a fixed portion of the trajectory plan to include: (i) a steering parameter to be fixed for a first duration of time and (ii) a speed parameter to be fixed for a second duration of time. The first duration of time and the second duration of time are of different lengths. The method includes computing input controls for autonomously controlling the vehicle according to the fixed portion of the trajectory plan. The method includes controlling the vehicle according to the input controls over the subsequent segment of the roadway.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: July 31, 2018
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Naoki Nagasaka, Nobuhide Kamata, Masahiro Harada
  • Publication number: 20180203456
    Abstract: System, methods, and other embodiments described herein relate to autonomously controlling a vehicle according to a trajectory plan. In one embodiment, a method includes updating, upon traveling over at least a portion of a current segment of a roadway, the trajectory plan for a subsequent segment of the roadway by setting a fixed portion of the trajectory plan to include: (i) a steering parameter to be fixed for a first duration of time and (ii) a speed parameter to be fixed for a second duration of time. The first duration of time and the second duration of time are of different lengths. The method includes computing input controls for autonomously controlling the vehicle according to the fixed portion of the trajectory plan. The method includes controlling the vehicle according to the input controls over the subsequent segment of the roadway.
    Type: Application
    Filed: February 10, 2017
    Publication date: July 19, 2018
    Inventors: Naoki Nagasaka, Nobuhide Kamata, Masahiro Harada
  • Patent number: 9915951
    Abstract: An autonomous vehicle can encounter an external environment in which an object overhangs a current road of the autonomous vehicle. For example, the branch of a tree may overhang the road. Such an overhanging object can be detected and suitable driving maneuvers for the autonomous vehicle can be determined. Sensor data can be acquired from at least a forward portion of the external environment. One or more floating obstacle candidates can be identified based on the acquired sensor data. The identified one or more floating obstacle candidates can be filtered to remove any floating obstacle candidates that do not meet one or more predefined parameters. A driving maneuver for the autonomous vehicle can be determined at least partially based on a height clearance between the autonomous vehicle and floating obstacle candidates that remain after being filtered out. The autonomous vehicle can be caused to implement the determined driving maneuver.
    Type: Grant
    Filed: December 27, 2015
    Date of Patent: March 13, 2018
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Xue Mei, Katsuhiro Sakai, Nobuhide Kamata
  • Patent number: 9910442
    Abstract: Ray tracing and static obstacle maps can be used in the operation of a vehicle. Sensor data of at least a portion of an external environment of the vehicle can be acquired. A dynamic obstacle in the external environment of the vehicle can be detected based on the acquired sensor data. In response to detecting a dynamic obstacle, it can be determined whether a secondary occluded area is located behind the dynamic obstacle relative to a current location of the vehicle based on a static obstacle map. Responsive to determining that a secondary occluded area is located behind the dynamic obstacle relative to a current location of the vehicle based on a static obstacle map, a driving maneuver for the vehicle can be determined based on at least the dynamic obstacle and the secondary occluded area. The vehicle can be caused to implement the determined driving maneuver.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: March 6, 2018
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Nobuhide Kamata, Xue Mei, Katsuhiro Sakai
  • Publication number: 20170371346
    Abstract: Ray tracing can be used to detect hidden obstacles in an external environment of a vehicle. An outbound sensor signal can be transmitted into an external environment of the vehicle. The outbound sensor signal can be a LIDAR sensor signal. If a return sensor signal is not received for the outbound sensor signal, it can be determined whether an obstacle is located along a projected path of the outbound sensor signal. Such a determination can be made using one or more maps, such as a terrain map and/or a static obstacle map. Responsive to determining that an obstacle is located along the projected path of the outbound sensor signal, a driving maneuver for the vehicle relative to the obstacle can be determined. The vehicle can be caused to implement the determined driving maneuver.
    Type: Application
    Filed: June 28, 2016
    Publication date: December 28, 2017
    Inventors: Xue Mei, Katsuhiro Sakai, Nobuhide Kamata
  • Publication number: 20170371338
    Abstract: Ray tracing and static obstacle maps can be used in the operation of a vehicle. Sensor data of at least a portion of an external environment of the vehicle can be acquired. A dynamic obstacle in the external environment of the vehicle can be detected based on the acquired sensor data. In response to detecting a dynamic obstacle, it can be determined whether a secondary occluded area is located behind the dynamic obstacle relative to a current location of the vehicle based on a static obstacle map. Responsive to determining that a secondary occluded area is located behind the dynamic obstacle relative to a current location of the vehicle based on a static obstacle map, a driving maneuver for the vehicle can be determined based on at least the dynamic obstacle and the secondary occluded area. The vehicle can be caused to implement the determined driving maneuver.
    Type: Application
    Filed: June 28, 2016
    Publication date: December 28, 2017
    Inventors: Nobuhide Kamata, Xue Mei, Katsuhiro Sakai
  • Publication number: 20170369051
    Abstract: Obstacles located in an external environment of a vehicle can be classified. At least a portion of the external environment can be sensed using one or more sensors to acquire sensor data. An obstacle candidate can be identified based on the acquired sensor data. An occlusion status for the identified obstacle candidate can be determined. The occlusion status can be a ratio of acquired sensor data for the obstacle candidate that is occluded to all acquired sensor data for the obstacle candidate. A classification for the obstacle candidate can be determined based on the determined occlusion status. A driving maneuver for the vehicle can be determined at least partially based on the determined classification for the obstacle candidate. The vehicle can be caused to implement the determined driving maneuver. The vehicle can be an autonomous vehicle.
    Type: Application
    Filed: June 28, 2016
    Publication date: December 28, 2017
    Inventors: Katsuhiro Sakai, Xue Mei, Nobuhide Kamata
  • Publication number: 20170221359
    Abstract: A vehicle can be configured to indicate sensor blind spots to a vehicle occupant (e.g., a driver). Using one or more sensors, the vehicle can acquire driving environment data of an external environment of the vehicle. It can be determined whether one or more portions of the acquired driving environment data is unreliable. Responsive to determining that one or more portions of the acquired driving environment data is unreliable, an alert can be caused to be presented within the vehicle. The alert can indicate one or more locations in the external environment in which the driving environment data that is determined to be unreliable. In some instances, the alert can be a visual alert and/or an audial alert.
    Type: Application
    Filed: January 28, 2016
    Publication date: August 3, 2017
    Inventor: Nobuhide Kamata
  • Patent number: 9699289
    Abstract: A computing device configured for communication with at least one autonomously controllable vehicle system or component. The computing device includes one or more processors for controlling operation of the computing device, and a memory for storing data and program instructions usable by the one or more processors. The one or more processors are configured to execute instructions stored in the memory to transmit a message configured to inform a vehicle user of all currently available levels of vehicle automation.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: July 4, 2017
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Nobuhide Kamata
  • Publication number: 20170185089
    Abstract: An autonomous vehicle can encounter an external environment in which an object overhangs a current road of the autonomous vehicle. For example, the branch of a tree may overhang the road. Such an overhanging object can be detected and suitable driving maneuvers for the autonomous vehicle can be determined. Sensor data can be acquired from at least a forward portion of the external environment. One or more floating obstacle candidates can be identified based on the acquired sensor data. The identified one or more floating obstacle candidates can be filtered to remove any floating obstacle candidates that do not meet one or more predefined parameters. A driving maneuver for the autonomous vehicle can be determined at least partially based on a height clearance between the autonomous vehicle and floating obstacle candidates that remain after being filtered out. The autonomous vehicle can be caused to implement the determined driving maneuver.
    Type: Application
    Filed: December 27, 2015
    Publication date: June 29, 2017
    Inventors: Xue Mei, Katsuhiro Sakai, Nobuhide Kamata
  • Publication number: 20170185088
    Abstract: Arrangements related to operating an autonomous vehicle in view-obstructed environments are described. At least a portion of an external environment of the autonomous vehicle can be sensed to detect one or more objects located therein. An occupant viewable area of the external environment can be determined. It can be determined whether one or more of the detected one or more objects is located outside of the determined occupant viewable area. Responsive to determining that a detected object is located outside of the determined occupant viewable area, one or more actions can be taken. For instance, the action can include presenting an alert within the autonomous vehicle. Alternatively or in addition, the action can include causing a current driving action of the autonomous vehicle to be modified.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Inventors: Katsuhiro Sakai, Danil V. Prokhorov, Bunyo Okumura, Naoki Nagasaka, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20170171375
    Abstract: A computing device configured for communication with at least one autonomously controllable vehicle system or component. The computing device includes one or more processors for controlling operation of the computing device, and a memory for storing data and program instructions usable by the one or more processors. The one or more processors are configured to execute instructions stored in the memory to transmit a message configured to inform a vehicle user of all currently available levels of vehicle automation.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 15, 2017
    Inventor: Nobuhide Kamata
  • Patent number: 9649979
    Abstract: Arrangements related to operating an autonomous vehicle in view-obstructed environments are described. At least a portion of an external environment of the autonomous vehicle can be sensed to detect one or more objects located therein. An occupant viewable area of the external environment can be determined. It can be determined whether one or more of the detected one or more objects is located outside of the determined occupant viewable area. Responsive to determining that a detected object is located outside of the determined occupant viewable area, one or more actions can be taken. For instance, the action can include presenting an alert within the autonomous vehicle. Alternatively or in addition, the action can include causing a current driving action of the autonomous vehicle to be modified.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: May 16, 2017
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Katsuhiro Sakai, Danil V. Prokhorov, Bunyo Okumura, Naoki Nagasaka, Masahiro Harada, Nobuhide Kamata
  • Patent number: 9576200
    Abstract: A computer-readable map format and methods of constructing the map format are disclosed. The map format includes location information for a plurality of background objects. At least one of the background objects is a seasonal background object and the location information associated with the seasonal background object is identified during a season in which an obscuration level associated with the seasonal background object is at a minimum. The obscuration level can be based on the amount that the seasonal background object is obscured or based on the amount of obscuration caused by the seasonal background object.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 21, 2017
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Nobuhide Kamata
  • Publication number: 20160221500
    Abstract: Arrangements related to operating an autonomous vehicle in view-obstructed environments are described. At least a portion of an external environment of the autonomous vehicle can be sensed to detect one or more objects located therein. An occupant viewable area of the external environment can be determined. It can be determined whether one or more of the detected one or more objects is located outside of the determined occupant viewable area. Responsive to determining that a detected object is located outside of the determined occupant viewable area, one or more actions can be taken. For instance, the action can include presenting an alert within the autonomous vehicle. Alternatively or in addition, the action can include causing a current driving action of the autonomous vehicle to be modified.
    Type: Application
    Filed: January 29, 2015
    Publication date: August 4, 2016
    Inventors: Katsuhiro Sakai, Danil V. Prokhorov, Bunyo Okumura, Naoki Nagasaka, Masahiro Harada, Nobuhide Kamata
  • Publication number: 20160180171
    Abstract: A computer-readable map format and methods of constructing the map format are disclosed. The map format includes location information for a plurality of background objects. At least one of the background objects is a seasonal background object and the location information associated with the seasonal background object is identified during a season in which an obscuration level associated with the seasonal background object is at a minimum. The obscuration level can be based on the amount that the seasonal background object is obscured or based on the amount of obscuration caused by the seasonal background object.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 23, 2016
    Inventor: Nobuhide Kamata
  • Patent number: 9340207
    Abstract: A system, device, and methods of automated driving are disclosed. One example method includes determining one or more potential vehicle paths based on information specific to the environment surrounding a vehicle and receiving an indication classifying one or more objects proximate to the one or more potential vehicle paths as an object of interest based on input received from one or more sensors disposed on the vehicle. The method further includes selecting a preferred vehicle path from the one or more potential vehicle paths based on properties of the one or more objects of interest and sending a command, to one or more vehicle systems, to control the vehicle to follow the preferred vehicle path.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: May 17, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Naoki Nagasaka, Katsuhiro Sakai, Bunyo Okumura, Masahiro Harada, Nobuhide Kamata
  • Patent number: 9141109
    Abstract: A system, device, and methods of automated driving. One example method includes determining a planned vehicle path using a path planner application receiving information based on inputs to one or more sensors disposed on a vehicle. The method further includes sending a command to one or more vehicle systems to control the vehicle to follow the planned vehicle path. While the vehicle follows the planned vehicle path, the method includes receiving an indication that the path planner application is not meeting a threshold performance level. After receiving the indication that the path planner application is not meeting the threshold performance level, the method further includes resending the previously sent command to the one or more vehicle systems to control the vehicle to follow the planned vehicle path.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: September 22, 2015
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Nobuhide Kamata
  • Publication number: 20150197246
    Abstract: A system, device, and methods of automated driving are disclosed. One example method includes determining one or more potential vehicle paths based on information specific to the environment surrounding a vehicle and receiving an indication classifying one or more objects proximate to the one or more potential vehicle paths as an object of interest based on input received from one or more sensors disposed on the vehicle. The method further includes selecting a preferred vehicle path from the one or more potential vehicle paths based on properties of the one or more objects of interest and sending a command, to one or more vehicle systems, to control the vehicle to follow the preferred vehicle path.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 16, 2015
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Naoki Nagasaka, Katsuhiro Sakai, Bunyo Okumura, Masahiro Harada, Nobuhide Kamata