Patents by Inventor Nobuhiro Inoue

Nobuhiro Inoue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200058959
    Abstract: A secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution where (A) the electrolytic solution contains a solvent and an electrolyte salt, the solvent containing ethylene carbonate, (B) a content of the electrolyte salt is from 0.8 mol/kg to 2.0 mol/kg both inclusive, (C) a content of the ethylene carbonate in the solvent is from 10 wt % to 30 wt % both inclusive, (D) a ratio M2/M1 of a number M2 of moles of the ethylene carbonate to a number M1 of moles of the electrolyte salt is from 0.4 to 2.4 both inclusive, and (E) the electrolytic solution contains at least one of sulfone compounds.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 20, 2020
    Inventors: Yusuke MORINO, Izaya OKAE, Nobuhiro INOUE, Kazumasa TAKESHI
  • Patent number: 10566649
    Abstract: A lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte provided between the positive electrode and the negative electrode. The positive electrode includes a positive electrode current collector and a positive electrode active material layer over the positive electrode current collector. The positive electrode active material layer includes a plurality of lithium-containing, composite oxides each of which is expressed by LiMPO4 (M is one or more of Fe (II), Mn (II), Co (II), and Ni (II)) that is a general formula. The lithium-containing composite oxide is a flat single crystal particle in which the length in the b-axis direction is shorter than each of the lengths in the a-axis direction and the c-axis direction. The lithium-containing composite oxide is provided over the positive electrode current collector so that the b-axis of the single crystal particle intersects with the surface of the positive electrode current collector.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: February 18, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoya Futamura, Tamae Moriwaka, Takahiro Kawakami, Junpei Momo, Nobuhiro Inoue
  • Publication number: 20200051466
    Abstract: The purpose of the present invention is to provide a cover member that excels in impact resistance. The present invention relates to a cover member disposed on the display panel of a display device, wherein the cover member is provided with a glass plate and a resin-molded article disposed at the periphery of the glass plate, the principal surface of the glass plate being smaller than the principal surface of the display panel.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 13, 2020
    Applicant: AGC INC.
    Inventors: Nobuhiro INOUE, Koji KOGANEZAWA, Mineo MORI, Yuichi SUZUKI, Eita NAGAMURA, Ryota NAKAJIMA
  • Patent number: 10549526
    Abstract: An intermediate transfer body is efficiently heated, and thus, transfer properties of an image and durability of the intermediate transfer body are ensured. A heating unit heats the intermediate transfer body by using a plurality of heating sources which are positioned by being shifted, with respect to a rotation direction of the intermediate transfer body. The plurality of heating sources includes a first heating source and a second heating source. A degree of heating the intermediate transfer body by the second heating source is greater than a degree of heating the intermediate transfer body by the first heating source. The second heating source is positioned on an upstream side, with respect to the rotation direction of the intermediate transfer body, from the first heating source.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: February 4, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventors: Koji Inoue, Jun Yasutani, Nobuhiro Kitabatake, Yoichi Takada
  • Patent number: 10553854
    Abstract: An object of one embodiment of the present invention is to provide a secondary battery in which deterioration of charge-discharge cycle characteristics is suppressed, to suppress generation of defects caused by expansion and contraction of an active material in a negative electrode, or to prevent deterioration caused by deformation of a secondary battery. To prevent deterioration, a material that can be alloyed with lithium and fluidified easily is used for a negative electrode. To hold a negative electrode active material over a surface of a current collector, a covering layer that covers the negative electrode active material is provided. Furthermore, a portion where the current collector and the negative electrode active material are in contact with each other is alloyed. In other words, an alloy that is in contact with both the current collector and the negative electrode active material is provided in the negative electrode.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: February 4, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Nobuhiro Inoue, Ryota Tajima, Naoki Kurihara, Junpei Momo
  • Patent number: 10541409
    Abstract: A decomposition reaction of an electrolyte solution and the like caused as a side reaction of charge and discharge is minimized in repeated charge and discharge of a lithium ion battery or a lithium ion capacitor, and thus the lithium ion battery or the lithium ion capacitor can have long-term cycle performance. A negative electrode for a power storage device includes a negative electrode current collector and a negative electrode active material layer which includes a plurality of particles of a negative electrode active material. Each of the particles of the negative electrode active material has an inorganic compound film containing a first inorganic compound on part of its surface. The negative electrode active material layer has a film in contact with an exposed part of the negative electrode active material and part of the inorganic compound film. The film contains an organic compound and a second inorganic compound.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: January 21, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Nobuhiro Inoue, Kai Kimura, Sachiko Kataniwa, Ryota Tajima
  • Publication number: 20190393421
    Abstract: Provided are a novel aromatic amine derivative having a specific structure and an organic electroluminescence device in which an organic thin layer comprising a single layer or plural layers including a light emitting layer is interposed between a cathode and an anode, wherein at least one layer of the above organic thin layer contains the aromatic amine derivative described above in the form of a single component or a mixed component. Thus, the organic electroluminescence device is less liable to be crystallized in molecules, improved in a yield in producing the organic electroluminescence device and extended in a lifetime.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 26, 2019
    Applicant: IDEMITSU KOSAN CO., LTD
    Inventors: Nobuhiro YABUNOUCHI, Tetsuya Inoue
  • Patent number: 10483044
    Abstract: To improve the reliability of a power storage device. A granular active material including carbon is used, and a net-like structure is formed on part of a surface of the granular active material. In the net-like structure, a carbon atom included in the granular active material is bonded to a silicon atom or a metal atom through an oxygen atom. Formation of the net-like structure suppresses reductive decomposition of an electrolyte solution, leading to a reduction in irreversible capacity. A power storage device using the above active material has high cycle performance and high reliability.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: November 19, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Nobuhiro Inoue, Ryota Tajima, Tamae Moriwaka, Junpei Momo, Teppei Oguni, Kai Kimura, Kazutaka Kuriki, Shunpei Yamazaki
  • Publication number: 20190326069
    Abstract: To improve the long-term cycle performance of a lithium-ion battery or a lithium-ion capacitor by minimizing the decomposition reaction of an electrolytic solution and the like as a side reaction of charge and discharge in the repeated charge and discharge cycles of the lithium-ion battery or the lithium-ion capacitor. A current collector and an active material layer over the current collector are included in an electrode for a power storage device. The active material layer includes a plurality of active material particles and silicon oxide. The surface of one of the active material particles has a region that is in contact with one of the other active material particles. The surface of the active material particle except the region is partly or entirely covered with the silicon oxide.
    Type: Application
    Filed: July 3, 2019
    Publication date: October 24, 2019
    Inventors: Kazutaka KURIKI, Ryota TAJIMA, Nobuhiro INOUE, Junpei MOMO
  • Patent number: 10446761
    Abstract: Provided are a novel aromatic amine derivative having a specific structure and an organic electroluminescence device in which an organic thin layer comprising a single layer or plural layers including a light emitting layer is interposed between a cathode and an anode, wherein at least one layer of the above organic thin layer contains the aromatic amine derivative described above in the form of a single component or a mixed component. Thus, the organic electroluminescence device is less liable to be crystallized in molecules, improved in a yield in producing the organic electroluminescence device and extended in a lifetime.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: October 15, 2019
    Assignee: IDEMITSU KOSAN CO., LTD.
    Inventors: Nobuhiro Yabunouchi, Tetsuya Inoue
  • Patent number: 10410868
    Abstract: A semiconductor device includes a first nitride semiconductor layer formed over a substrate, a second nitride semiconductor layer formed over the first nitride semiconductor layer and having a band gap wider than a band gap of the first nitride semiconductor layer, a trench penetrating through the second nitride semiconductor layer and reaching an inside of the first nitride semiconductor layer, a gate electrode placed in the trench over a gate insulating film, and a first electrode and a second electrode formed over the second nitride semiconductor layer on both sides of the gate electrode, respectively.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: September 10, 2019
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Takashi Inoue, Tatsuo Nakayama, Yasuhiro Okamoto, Hiroshi Kawaguchi, Toshiyuki Takewaki, Nobuhiro Nagura, Takayuki Nagai, Yoshinao Miura, Hironobu Miyamoto
  • Patent number: 10388467
    Abstract: To improve the long-term cycle performance of a lithium-ion battery or a lithium-ion capacitor by minimizing the decomposition reaction of an electrolytic solution and the like as a side reaction of charge and discharge in the repeated charge and discharge cycles of the lithium-ion battery or the lithium-ion capacitor. A current collector and an active material layer over the current collector are included in an electrode for a power storage device. The active material layer includes a plurality of active material particles and silicon oxide. The surface of one of the active material particles has a region that is in contact with one of the other active material particles. The surface of the active material particle except the region is partly or entirely covered with the silicon oxide.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: August 20, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazutaka Kuriki, Ryota Tajima, Nobuhiro Inoue, Junpei Momo
  • Publication number: 20190245195
    Abstract: An object is to suppress electrochemical decomposition of an electrolyte solution and the like at a negative electrode in a lithium ion battery or a lithium ion capacitor: thus, irreversible capacity is reduced, cycle performance is improved, or operating temperature range is extended. A negative electrode for a power storage device including a negative electrode current collector, a negative electrode active material layer which is over the negative electrode current collector and includes a plurality of particles of a negative electrode active material, and a film covering part of the negative electrode active material. The film has an insulating property and lithium ion conductivity.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Inventors: Nobuhiro INOUE, Sachiko KATANIWA, Kazutaka KURIKI, Junpei MOMO
  • Publication number: 20190221848
    Abstract: To increase the conductivity and electric capacity of an electrode which includes active material particles and the like and is used in a battery, a graphene net including 1 to 100 graphene sheets is used instead of a conventionally used conduction auxiliary agent and binder. The graphene net which has a two-dimensional expansion and a three-dimensional structure is more likely to touch active material particles or another conduction auxiliary agent, thereby increasing the conductivity and the bonding strength between active material particles. This graphene net is obtained by mixing graphene oxide and active material particles and then heating the mixture in a vacuum or a reducing atmosphere.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Inventors: Hiroatsu TODORIKI, Junpei MOMO, Teppei OGUNI, Nobuhiro INOUE
  • Publication number: 20190207203
    Abstract: To provide a power storage device with a high capacity. To provide a power storage device with a high energy density. To provide a highly reliable power storage device. To provide a long-life power storage device. To provide an electrode with a high capacity. To provide an electrode with a high energy density. To provide a highly reliable electrode. To provide a long-life electrode. The power storage device includes a first electrode and a second electrode. The first electrode includes a first current collector and a first active material layer. The first active material layer includes a first active material and a first binder. The first active material is graphite. A separation strength F of the first electrode that is measured when the first active material layer is separated from the first current collector after the first electrode is immersed in a solution at a temperature higher than or equal to 20° C. and lower than or equal to 70° C.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 4, 2019
    Inventors: Kai KIMURA, Tatsuya IKENUMA, Nobuhiro INOUE, Teppei OGUNI
  • Patent number: 10263243
    Abstract: An object is to suppress electrochemical decomposition of an electrolyte solution and the like at a negative electrode in a lithium ion battery or a lithium ion capacitor; thus, irreversible capacity is reduced, cycle performance is improved, or operating temperature range is extended. A negative electrode for a power storage device including a negative electrode current collector, a negative electrode active material layer which is over the negative electrode current collector and includes a plurality of particles of a negative electrode active material, and a film covering part of the negative electrode active material. The film has an insulating property and lithium ion conductivity.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: April 16, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Nobuhiro Inoue, Sachiko Kataniwa, Kazutaka Kuriki, Junpei Momo
  • Patent number: 10243214
    Abstract: To increase the conductivity and electric capacity of an electrode which includes active material particles and the like and is used in a battery, a graphene net including 1 to 100 graphene sheets is used instead of a conventionally used conduction auxiliary agent and binder. The graphene net which has a two-dimensional expansion and a three-dimensional structure is more likely to touch active material particles or another conduction auxiliary agent, thereby increasing the conductivity and the bonding strength between active material particles. This graphene net is obtained by mixing graphene oxide and active material particles and then heating the mixture in a vacuum or a reducing atmosphere.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: March 26, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroatsu Todoriki, Junpei Momo, Teppei Oguni, Nobuhiro Inoue
  • Patent number: 10230095
    Abstract: To provide a power storage device with a high capacity. To provide a power storage device with a high energy density. To provide a highly reliable power storage device. To provide a long-life power storage device. To provide an electrode with a high capacity. To provide an electrode with a high energy density. To provide a highly reliable electrode. To provide a long-life electrode. The power storage device includes a first electrode and a second electrode. The first electrode includes a first current collector and a first active material layer. The first active material layer includes a first active material and a first binder. The first active material is graphite. A separation strength F of the first electrode that is measured when the first active material layer is separated from the first current collector after the first electrode is immersed in a solution at a temperature higher than or equal to 20° C. and lower than or equal to 70° C.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: March 12, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kai Kimura, Tatsuya Ikenuma, Nobuhiro Inoue, Teppei Oguni
  • Publication number: 20180331357
    Abstract: A power storage device with high capacity is provided. Alternatively, a power storage device with excellent cycle characteristics is provided. Alternatively, a power storage device with high charge and discharge efficiency is provided. Alternatively, a power storage device with a long lifetime is provided. A negative electrode active material includes a first region and a second region. The first region includes at least one element selected from Si, Mg, Ca, Ga, Al, Ge, Sn, Pb, Sb, Bi, Ag, Zn, Cd, As, Hg, and In. The second region includes oxygen and the same element as the one included in the first region. The crystallite size of the element included in the first region is larger than or equal to 1 nm and smaller than or equal to 10 nm.
    Type: Application
    Filed: July 11, 2018
    Publication date: November 15, 2018
    Inventors: Nobuhiro INOUE, Kiyofumi OGINO
  • Patent number: 10128498
    Abstract: A power storage device which has improved performance such as higher discharge capacity and in which deterioration due to peeling or the like of an active material layer is less likely to be caused is provided. In an electrode for the power storage device, phosphorus-doped amorphous silicon is used for the active material layer over a current collector as a material that can be alloyed with lithium, and niobium oxide is deposited over the active material layer as a layer containing niobium. Accordingly, the capacity of the power storage device can be increased and the cycle characteristics and the charge-discharge efficiency can be improved.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: November 13, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazutaka Kuriki, Nobuhiro Inoue, Kiyofumi Ogino