Patents by Inventor Nobuhiro Miyata

Nobuhiro Miyata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230395819
    Abstract: An electrode catalyst according to the present disclosure includes a mesoporous material and catalyst metal particles which are supported in at least an inner portion of the mesoporous material and which contain platinum and a metal different from platinum. The mesoporous material has mesopores having a mode radius of greater than or equal to 1 nm and less than or equal to 25 nm and a pore volume of greater than or equal to 1.0 cm3/g and less than or equal to 3.0 cm3/g. The catalyst metal particles which are supported have an L10 structure. The proportion of the L10 structure is greater than 0.25.
    Type: Application
    Filed: August 22, 2023
    Publication date: December 7, 2023
    Inventors: NOBUHIRO MIYATA, HARUHIKO SHINTANI
  • Patent number: 11784320
    Abstract: A catalyst includes a mesoporous material and catalytic metal particles supported at least within the mesoporous material and containing platinum and a metal different from platinum. The mesoporous material has mesopores with a mode radius of 1 to 25 nm and a pore volume of 1.0 to 3.0 cm3/g before supporting of the catalytic metal particles, and has an average particle size of greater than or equal to 200 nm. A molar ratio of the metal different from platinum and contained in the catalytic metal particles relative to all metals contained in the catalytic metal particles is greater than or equal to 0.25, and among the catalytic metal particles, a volume ratio of catalytic metal particles having a particle size of greater than or equal to 20 nm is less than or equal to 10%.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: October 10, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Haruhiko Shintani, Nobuhiro Miyata, Tomokatsu Wada
  • Patent number: 11367879
    Abstract: An electrode catalyst of an electrochemical device according to the present disclosure is an electrode catalyst of an electrochemical device, the electrode catalyst including a mesoporous material; and catalyst metal particles supported at least in the mesoporous material. Before supporting the catalyst metal particles, the mesoporous material includes mesopores having a mode radius of 1 to 25 nm and a pore volume of 1.0 to 3.0 cm3/g, and number density of the catalyst metal particles supported in the mesopores is lower at an outer side of the mesoporous material than number density of the catalyst metal particles supported in the mesopores at an inner side thereof.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: June 21, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Haruhiko Shintani, Nobuhiro Miyata, Tomokatsu Wada
  • Publication number: 20220021005
    Abstract: An electrode catalyst for a fuel battery includes a mesoporous material and catalyst metal particles supported at least in the mesoporous material. In the electrode catalyst for a fuel battery, before supporting the catalyst metal particles, the mesoporous material has mesopores having a mode radius of greater than or equal to 1 nm and less than or equal to 25 nm and has a value of greater than 0.90, the value being determined by dividing a specific surface area S1-25 (m2/g) of the mesopores obtained by analyzing a nitrogen adsorption-desorption isotherm according to a BJH method, the mesopores having a radius of greater than or equal to 1 nm and less than or equal to 25 nm, by a BET specific surface area (m2/g) evaluated according to a BET method.
    Type: Application
    Filed: May 19, 2021
    Publication date: January 20, 2022
    Inventors: NOBUHIRO MIYATA, HARUHIKO SHINTANI, TOMOKATSU WADA
  • Publication number: 20210242471
    Abstract: A catalyst includes a mesoporous material and catalytic metal particles supported at least within the mesoporous material and containing platinum and a metal different from platinum. The mesoporous material has mesopores with a mode radius of 1 to 25 nm and a pore volume of 1.0 to 3.0 cm3/g before supporting of the catalytic metal particles, and has an average particle size of greater than or equal to 200 nm. A molar ratio of the metal different from platinum and contained in the catalytic metal particles relative to all metals contained in the catalytic metal particles is greater than or equal to 0.25, and among the catalytic metal particles, a volume ratio of catalytic metal particles having a particle size of greater than or equal to 20 nm is less than or equal to 10%.
    Type: Application
    Filed: April 16, 2021
    Publication date: August 5, 2021
    Inventors: HARUHIKO SHINTANI, NOBUHIRO MIYATA, TOMOKATSU WADA
  • Publication number: 20200127299
    Abstract: An electrode catalyst of an electrochemical device according to the present disclosure is an electrode catalyst of an electrochemical device, the electrode catalyst including a mesoporous material; and catalyst metal particles supported at least in the mesoporous material. Before supporting the catalyst metal particles, the mesoporous material includes mesopores having a mode radius of 1 to 25 nm and a pore volume of 1.0 to 3.0 cm3/g, and number density of the catalyst metal particles supported in the mesopores is lower at an outer side of the mesoporous material than number density of the catalyst metal particles supported in the mesopores at an inner side thereof.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 23, 2020
    Inventors: HARUHIKO SHINTANI, NOBUHIRO MIYATA, TOMOKATSU WADA
  • Publication number: 20160333485
    Abstract: A photoelectrode (100) of the present invention includes a conductive layer (12) and a photocatalytic layer (13) provided on the conductive layer (12). The conductive layer (12) is made of a metal nitride. The photocatalytic layer (13) is made of at least one selected from the group consisting of a nitride semiconductor and an oxynitride semiconductor. When the photocatalytic layer (13) is made of a n-type semiconductor, the energy difference between the vacuum level and the Fermi level of the conductive layer (12) is smaller than the energy difference between the vacuum level and the Fermi level of the photocatalytic layer (13). When the photocatalytic layer (13) is made of a p-type semiconductor, the energy difference between the vacuum level and the Fermi level of the conductive layer (12) is larger than the energy difference between the vacuum level and the Fermi level of the photocatalytic layer (13).
    Type: Application
    Filed: July 27, 2016
    Publication date: November 17, 2016
    Inventors: Satoru TAMURA, Takaiki NOMURA, Takahiro SUZUKI, Kenichi TOKUHIRO, Noboru TANIGUCHI, Kazuhito HATO, Nobuhiro MIYATA
  • Patent number: 9353449
    Abstract: The NbON film of the present invention is a NbON film in which a photocurrent is generated by light irradiation. The NbON film of the present invention is desirably a single-phase film. The hydrogen generation device (600) of the present invention includes: an optical semiconductor electrode (620) including a conductor (621) and the NbON film (622) of the present invention disposed on the conductor (621); a counter electrode (630) connected electrically to the conductor (621); a water-containing electrolyte (640) disposed in contact with a surface of the NbON film (622) and a surface of the counter electrode (630); and a container (610) containing the optical semiconductor electrode (620), the counter electrode (630), and the electrolyte (640). In this device, hydrogen is generated by irradiating the NbON film (622) with light.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: May 31, 2016
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takaiki Nomura, Takahiro Suzuki, Nobuhiro Miyata, Kazuhito Hato
  • Publication number: 20150308005
    Abstract: The present invention provides a method for generating oxygen. The method comprises (a) preparing a water electrolysis device comprising a container storing an electrolyte aqueous solution; an anode which is in contact with the electrolyte aqueous solution and includes at least one silver delafossite compound selected from the group consisting of a silver cobalt delafossite compound represented by a chemical formula AgCoO2 and a silver rhodium delafossite compound represented by a chemical formula AgRhO2; a cathode which is in contact with the electrolyte aqueous solution; and a power supply, wherein the at least one silver delafossite compound is in contact with the electrolyte aqueous solution, and (b) applying an electric potential difference between the cathode and the anode using the power supply to generate oxygen on the anode due to electrolysis of water which occurs on the at least one silver delafossite compound.
    Type: Application
    Filed: March 23, 2015
    Publication date: October 29, 2015
    Inventors: REIKO TANIGUCHI, KENJI TOYODA, NOBUHIRO MIYATA
  • Publication number: 20150243443
    Abstract: A photosemiconductor electrode (400) of the present invention includes a conductor (410) and a photosemiconductor layer (first semiconductor layer) (420) provided on the conductor (410). The photosemiconductor layer (420) includes a photosemiconductor (e.g., a photosemiconductor film (421)) and an oxide containing iridium element (e.g., iridium oxide (422)). The Fermi level of the oxide containing iridium element is more negative than the Fermi level of the photosemiconductor and is more negative than ?4.44 eV, with respect to the vacuum level.
    Type: Application
    Filed: October 28, 2013
    Publication date: August 27, 2015
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yoshihiro Kozawa, Satoru Tamura, Nobuhiro Miyata, Takahiro Kurabuchi, Takaiki Nomura, Kazuhito Hato
  • Patent number: 9114379
    Abstract: The present invention is a niobium nitride which has a composition represented by the composition formula Nb3N5 and in which a constituent element Nb has a valence of substantially +5. The method for producing the niobium nitride of the present invention includes the step of nitriding an organic niobium compound by reacting the organic niobium compound with a nitrogen compound gas.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: August 25, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takahiro Suzuki, Takaiki Nomura, Tomohiro Kuroha, Nobuhiro Miyata, Satoru Tamura, Kenichi Tokuhiro, Kazuhito Hato
  • Publication number: 20150197866
    Abstract: The present invention provides a method for efficiently generating oxygen by electrolyzing water using a copper delafossite compound as an anode. First, in the present invention, a water electrolysis device is prepared. The water electrolysis device comprises a container, a power supply, an anode, a cathode; and an aqueous electrolytic solution. The anode and the cathode are in contact with the aqueous electrolytic solution. The anode has a copper cobalt delafossite compound represented by a chemical formula CuCoO2. The copper cobalt delafossite compound is in contact with the aqueous electrolytic solution. Then, an electric potential difference is applied between the cathode and the anode using the power supply to generate oxygen on the anode due to electrolysis of water which occurs on the copper cobalt delafossite compound.
    Type: Application
    Filed: November 14, 2014
    Publication date: July 16, 2015
    Inventors: KENJI TOYODA, REIKO TANIGUCHI, NOBUHIRO MIYATA
  • Patent number: 9079158
    Abstract: The present invention is a niobium nitride which has a composition represented by the composition formula Nb3N5 and in which a constituent element Nb has a valence of substantially +5. The method for producing the niobium nitride of the present invention includes the step of nitriding an organic niobium compound by reacting the organic niobium compound with a nitrogen compound gas.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: July 14, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takahiro Suzuki, Takaiki Nomura, Tomohiro Kuroha, Nobuhiro Miyata, Satoru Tamura, Kenichi Tokuhiro, Kazuhito Hato
  • Patent number: 8853685
    Abstract: The optical semiconductor of the present invention is an optical semiconductor containing In, Ga, Zn, O and N, and has a composition in which a part of oxygen (O) is substituted by nitrogen (N) in a general formula: In2xGa2(1-x)O3(ZnO)y, where x and y satisfy 0.2<x<1 and 0.5?y. In the general formula, x is preferably 0.5, and furthermore, y is preferably 1 or more and 6 or less, and more preferably 2 or 6. It is preferred that the optical semiconductor of the present invention have a wurtzite crystal structure. The optical semiconductor of the present invention is an excellent optical semiconductor because it has a smaller band gap, can utilize visible light, and has high carrier mobility and thus has high quantum efficiency.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: October 7, 2014
    Assignee: Panasonic Corporation
    Inventors: Takaiki Nomura, Takahiro Suzuki, Nobuhiro Miyata, Kazuhito Hato
  • Patent number: 8758578
    Abstract: A photoelectrochemical cell (100) includes: a semiconductor electrode (120) including a substrate (121), a first n-type semiconductor layer (122) disposed on the substrate (121), and a second n-type semiconductor layer (123) and a conductor (124) disposed apart from each other on the first n-type semiconductor layer (122); a counter electrode (130) connected electrically to the conductor (124); an electrolyte (140) in contact with surfaces of the second n-type semiconductor layer (123) and the counter electrode (130); and a container (110) accommodating the semiconductor electrode (120), the counter electrode (130) and the electrolyte (140).
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: June 24, 2014
    Assignee: Panasonic Corporation
    Inventors: Takaiki Nomura, Takahiro Suzuki, Nobuhiro Miyata, Kazuhito Hato
  • Patent number: 8663435
    Abstract: The method for producing the optical semiconductor of the present disclosure includes a mixing step of producing a mixture containing a reduction inhibitor and a niobium compound that contains at least oxygen in its composition; a nitriding step of nitriding the mixture by the reaction between the mixture and a nitrogen compound gas; and a washing step of isolating niobium oxynitride from the material obtained through the nitriding step by dissolving chemical species other than niobium oxynitride with a washing liquid. The optical semiconductor of the present disclosure substantially consists of niobium oxynitride having a crystal structure of baddeleyite and having a composition represented by the composition formula, NbON.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: March 4, 2014
    Assignee: Panasonic Corporation
    Inventors: Takahiro Suzuki, Takaiki Nomura, Satoru Tamura, Kazuhito Hato, Noboru Taniguchi, Kenichi Tokuhiro, Nobuhiro Miyata
  • Publication number: 20140057187
    Abstract: The present invention is a niobium nitride which has a composition represented by the composition formula Nb3N5 and in which a constituent element Nb has a valence of substantially +5. The method for producing the niobium nitride of the present invention includes the step of nitriding an organic niobium compound by reacting the organic niobium compound with a nitrogen compound gas.
    Type: Application
    Filed: November 28, 2012
    Publication date: February 27, 2014
    Inventors: Takahiro Suzuki, Takaiki Nomura, Tomohiro Kuroha, Nobuhiro Miyata, Satoru Tamura, Kenichi Tokuhiro, Kazuhito Hato
  • Publication number: 20140004435
    Abstract: A photoelectrode (100) of the present invention includes a conductive layer (12) and a photocatalytic layer (13) provided on the conductive layer (12). The conductive layer (12) is made of a metal nitride. The photocatalytic layer (13) is made of at least one selected from the group consisting of a nitride semiconductor and an oxynitride semiconductor. When the photocatalytic layer (13) is made of a n-type semiconductor, the energy difference between the vacuum level and the Fermi level of the conductive layer (12) is smaller than the energy difference between the vacuum level and the Fermi level of the photocatalytic layer (13). When the photocatalytic layer (13) is made of a p-type semiconductor, the energy difference between the vacuum level and the Fermi level of the conductive layer (12) is larger than the energy difference between the vacuum level and the Fermi level of the photocatalytic layer (13).
    Type: Application
    Filed: April 25, 2012
    Publication date: January 2, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Satoru Tamura, Takaiki Nomura, Takahiro Suzuki, Kenichi Tokuhiro, Noboru Taniguchi, Kazuhito Hato, Nobuhiro Miyata
  • Publication number: 20130316254
    Abstract: An energy system includes an solar hydrogen producing unit (101) that produces hydrogen through decomposition of water by a photocatalytic effect, a fuel cell (103) that generates electricity by a reaction between the hydrogen produced by the solar hydrogen producing unit (101) and an oxidizing gas and discharges water as a reaction product, and a water distribution mechanism (104) that returns the water serving as the reaction product discharged from the fuel cell (103) to the solar hydrogen producing unit (101). With the configuration, an energy system that suppresses an amount of external water supply to a low level to achieve good water balance can be provided.
    Type: Application
    Filed: February 29, 2012
    Publication date: November 28, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Kenichi Tokuhiro, Takaiki Nomura, Takahiro Suzuki, Satoru Tamura, Nobuhiro Miyata, Noboru Taniguchi, Kazuhito Hato
  • Publication number: 20130192984
    Abstract: The NbON film of the present invention is a NbON film in which a photocurrent is generated by light irradiation. The NbON film of the present invention is desirably a single-phase film. The hydrogen generation device (600) of the present invention includes: an optical semiconductor electrode (620) including a conductor (621) and the NbON film (622) of the present invention disposed on the conductor (621); a counter electrode (630) connected electrically to the conductor (621); a water-containing electrolyte (640) disposed in contact with a surface of the NbON film (622) and a surface of the counter electrode (630); and a container (610) containing the optical semiconductor electrode (620), the counter electrode (630), and the electrolyte (640). In this device, hydrogen is generated by irradiating the NbON film (622) with light.
    Type: Application
    Filed: August 1, 2012
    Publication date: August 1, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Takaiki Nomura, Takahiro Suzuki, Nobuhiro Miyata, Kazuhito Hato