Patents by Inventor Nobuji Kishimoto

Nobuji Kishimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040162453
    Abstract: Lower alkenes of from 2 to 5 carbon atoms, such as propene, are produced by the vapor phase catalytic oxidative dehyrogenation of lower alkane, such as propane, using a mixed metal oxide catalyst of formula (1) as decribed, containing manganese and at least one additional metal as essential elements, e.g., Mn1Sb0.15Ox, Mn1P0.2Ox, Mn1SO0.15W0.05Cr0.1Ox. The lower alkene may be further oxidatively dehydrogenated using a mixed metal oxide catalyst of formula (1), especially formula (2), as described, to produce a mixture of unsaturated aldehyde and unsaturated acid. The unsaturated aldehyde may be further oxidatively dehydrogenated in the vapor phase in the presence of mixed metal oxide catalyst of formula (1), especially formula (3).
    Type: Application
    Filed: February 13, 2004
    Publication date: August 19, 2004
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Patent number: 6756517
    Abstract: Lower alkenes of from 2 to 5 carbon atoms, such as propene, are produced by the vapor phase catalytic oxidative dehydrogenation of lower alkane, such as propane, using a mixed metal oxide catalyst of formula (1) as decribed, containing manganese and at least one additional metal as essential elements, e.g., Mn1Sb0.15Ox, Mn1P0.2Ox, Mn1S0.15W0.05Cr0.1Ox. The lower alkene may be further oxidatively dehydrogenated using a mixed metal oxide catalyst of formula (1), especially formula (2), as described, to produce a mixture of unsaturated aldehyde and unsaturated acid. The unsaturated aldehyde may be further oxidatively dehydrogenated in the vapor phase in the presence of mixed metal oxide catalyst of formula (1), especially formula (3).
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: June 29, 2004
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Patent number: 6635794
    Abstract: Novel oxidative dehydrogenation catalysts which are useful in vapor-phase oxidative dehydrogenation of lower alkanes with molecular oxygen to produce corresponding olefins at high yields are provided. The catalysts are characterized by containing Mn as the essential component and a crystal phase which is identified by the peaks appearing on their X-ray diffraction spectra (per Cu—K&agr; cathode) where the diffraction angle 2&thgr; (±0.3°) is at 32.9°, 55.2°, 23.1°, 38.2° and 65.8°. The use of those catalysts enables production of the olefins at high yields.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: October 21, 2003
    Assignee: Nippon Shokubai Co Ltd
    Inventor: Nobuji Kishimoto
  • Publication number: 20020188159
    Abstract: The present invention provide a catalyst capable of producing an aromatic aldehyde by gas-phase oxidation of the corresponding alkylbenzene in the presence of a molecular oxygen in high yield, and a method of producing an aromatic aldehyde from the corresponding alkylbenzene in high yield by using the above catalyst.
    Type: Application
    Filed: March 29, 2002
    Publication date: December 12, 2002
    Applicant: NIPPON SHOKUBAI CO., LTD.
    Inventors: Nobuji Kishimoto, Kunika Takahashi, Akiyoshi Nakajima
  • Patent number: 6479710
    Abstract: A solid acid-base catalyst contains vanadium pentoxide hydrate. Moreover, it is preferable that the vanadium pentoxide hydrate in the solid acid-base catalyst has a composition which is represented by the following general equation (1): V2O5.nH2O  (1) (n: 0.1-3). Creation of the vanadium pentoxide hydrate was confirmed by measuring X-ray diffraction spectrum shown in FIG. 1. In accordance with the above arrangement, the solid acid-base catalyst can sufficiently display catalytic activity under mild conditions, and it can be suitably applied to various reactions, such as the syntheses of olefins or ethers through dehydration reactions of alcohols, the syntheses of aldehydes or ketones through dehydrogenation reactions of alcohols, hydrations and isomerization reactions of olefins, alkylations, esterifications, amidations, acetalizations, aminations, hydrogen shift reactions, aldol condensation reactions and polymerization reactions.
    Type: Grant
    Filed: March 15, 1999
    Date of Patent: November 12, 2002
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Patent number: 6458737
    Abstract: The present invention has for its object to provide a novel catalyst by use of which methylbenzenes can be oxidized in gaseous phase in the presence of molecular oxygen to give the corresponding aromatic aldehydes in high yields, a process for producing an aromatic aldehyde from the corresponding methylbenzene in a high yield by use of said catalyst, and a process for producing cyclohexanedimethanol which comprises hydrogenating phthalaldehyde among the aromatic aldehydes which can be obtained as above.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 1, 2002
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Nobuji Kishimoto, Isao Nakamura, Yusei Nagamura, Akiyoshi Nakajima, Masashi Hashimoto, Kunika Takahashi
  • Publication number: 20020077518
    Abstract: Novel oxidative dehydrogenation catalysts which are useful in vapor-phase oxidative dehydrogenation of lower alkanes with molecular oxygen to produce corresponding olefins at high yields are provided. The catalysts are characterized by containing Mn as the essential component and a crystal phase which is identified by the peaks appearing on their X-ray diffraction spectra (per Cu—K&agr; cathode) where the diffraction angle 2&thgr; (±0.3°) is at 32.9°, 55.2°, 23.1°, 38.2° and 65.8°. The use of those catalysts enables production of the olefins at high yields.
    Type: Application
    Filed: October 23, 2001
    Publication date: June 20, 2002
    Applicant: NIPPON SHOKUBAI CO., LTD.
    Inventor: Nobuji Kishimoto
  • Publication number: 20010049461
    Abstract: Lower alkenes of from 2 to 5 carbon atoms, such as propene, are produced by the vapor phase catalytic oxidative dehyrogenation of lower alkane, such as propane, using a mixed metal oxide catalyst of formula (1) as decribed, containing manganese and at least one additional metal as essential elements, e.g., Mn1Sb0.15Ox, Mn1P0.2Ox, Mn1S0.15W0.05Cr0.1Ox. The lower alkene may be further oxidatively dehydrogenated using a mixed metal oxide catalyst of formula (1), especially formula (2), as described, to produce a mixture of unsaturated aldehyde and unsaturated acid. The unsaturated aldehyde may be further oxidatively dehydrogenated in the vapor phase in the presence of mixed metal oxide catalyst of formula (1), especially formula (3).
    Type: Application
    Filed: July 2, 2001
    Publication date: December 6, 2001
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Publication number: 20010047119
    Abstract: A solid acid-base catalyst contains vanadium pentoxide hydrate.
    Type: Application
    Filed: March 15, 1999
    Publication date: November 29, 2001
    Inventors: NOBUJI KISHIMOTO, ETSUSHIGE MATSUNAMI
  • Patent number: 6281378
    Abstract: Vanadium-containing catalysts are obtained by using polyvanadic acid as a source of vanadium. Vanadium-containing catalysts are obtained by mixing catalyst components other than vanadium, or their precursors, with a polyvanadic acid sol which is formed by ion-exchanging a metavanadic acid aqueous solution with a proton-type cation-exchange resin and performing polycondensation, and by drying and/or calcining the mixture.
    Type: Grant
    Filed: June 5, 2000
    Date of Patent: August 28, 2001
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Publication number: 20010008623
    Abstract: The invention provides catalysts for oxidative dehydrogenation of lower alkanes, said catalysts being suitable for use in vapor phase oxidative dehydrogenation of C2-C5 lower alkanes in the presence of molecular oxygen to produce corresponding olefins and characterized by having a composition expressed by a general formula (I) below:
    Type: Application
    Filed: May 18, 1999
    Publication date: July 19, 2001
    Inventors: NOBUJI KISHIMOTO, ETSUSHIGE MATSUNAMI
  • Patent number: 6239325
    Abstract: The invention provides process for oxidative dehydrogenation of lower alkanes, by vapor phase oxidative dehydrogenation of C2-C5 lower alkanes in the presence of a catalyst and molecular oxygen to produce the corresponding olefins, in which the catalyst has a composition expressed by a general formula (1) below: A&agr;Sb&bgr;W&ggr;D&dgr;Ox   (1) in which A is at least one metal selected from the group consisting of molybdenum and chromium; Sb is antimony; W is tungsten; O is oxygen; and D is at least one metal selected from the group consisting of V, Nb, Ta, Fe, Co, Ni, Cu, Ag, Zn, B, Tl, Sn, Pb, Te, Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, La, Ce and Sm; &agr;, &bgr;, &ggr;, &dgr; and x denote atomic numbers of A, Sb, W, D and O, respectively, where when &agr;=1, &bgr;=0.5-10, &ggr;=0.1-10 and &dgr;=0-3; and x is a numerical value determined by the state of oxidation of those elements other than oxygen.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: May 29, 2001
    Assignee: Nippon Shokubai Co Ltd
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Patent number: 5985788
    Abstract: A process for the preparation of (meth)acrylonitriles following ammoxidation process comprising catalytically oxidizing at least one saturated hydrocarbon selected from the group consisting of propane and isobutane with a mixed gas containing molecular oxygen and ammonia in the presence of a catalyst, is provided, the process being characterized by the use of a catalyst composed of complex oxide which is expressed by the general formula (I) below:Mo.alpha.Sb.beta.W.gamma.Ox (I)(in which .alpha., .beta. and .gamma. denote the number of atoms of Mo, Sb and W, respectively, and when .alpha. is 1, .beta. is 0.5-10 and .gamma. is 0.5-10; and x is a value determined by valence of the existing elements)as supported on a refractory inorganic carrier.According to this process, the object nitrites can be prepared at high yields with industrial advantages.
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: November 16, 1999
    Assignee: Nippon Shokubai Co Ltd
    Inventors: Nobuji Kishimoto, Taizou Matsueda
  • Patent number: 5877330
    Abstract: Vanadium-containing catalysts are obtained by using polyvanadic acid as a source of vanadium. Vanadium-containing catalysts are obtained by mixing catalyst components other than vanadium, or their precursors, with a polyvanadic acid sol which is formed by ion-exchanging a metavanadic acid aqueous solution with a proton-type cation-exchange resin and performing polycondensation, and by drying and/or calcining the mixture.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: March 2, 1999
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Nobuji Kishimoto, Etsushige Matsunami
  • Patent number: 5844112
    Abstract: A method for the preparation of (meth)acrylonitriles following ammoxidation process comprising catalytically oxidizing at least one saturated hydrocarbon selected from the group consisting of propane and isobutane with a mixed gas containing mole-cular oxygen and ammonia in the presence of a catalyst, is provided, the method being characterized by the use of a catalyst composed of complex oxide which is expressed by the general formula (I) below:Cr.alpha.Sb.beta.W.gamma.Ox (I)(in which .alpha., .beta. and .gamma. denote the number of atoms of Cr, Sb and W, respectively, and when .alpha. is 1, .beta. is 0.5-5 and .gamma. is 0.2-2; and x is a value determined by valence of the existing elements).According to this method, the object nitriles can be prepared at high yields with industrial advantages.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: December 1, 1998
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Akira Kurusu, Nobuji Kishimoto, Isao Nakamura, Etsushige Matsunami
  • Patent number: 5206201
    Abstract: A catalyst for the production of a substituted benzaldehyde by catalytic vapor-phase oxidation of a substituted toluene, which catalyst has as a catalytically active substance being composed of an oxide represented by the general formula III:V.sub.a Mo.sub.b X.sub.c Y.sub.d O.sub.e (III)wherein V, Mo, and O are respectively for vanadium, molybdenum, and oxygen, X is at least one element selected from the group consisting of sodium, potassium, rubidium, cesium, and thallium, Y is at least one element selected from the group consisting of niobium, tantalum, phosphorus, antimony, bismuth, tellurium, tin, lead, boron, copper, and silver, and a, b, c, d, and e indicate the atomic ratios of relevant elements such that where a+b=1, then b=0.05 to 0.4, c=0.1 to 1, d=0 to 1, and e=the value determined by the state of oxidation of other elements.
    Type: Grant
    Filed: May 22, 1991
    Date of Patent: April 27, 1993
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Nobuji Kishimoto, Isao Nakamura, Taizou Matsueda, Yoshitaka Arita
  • Patent number: 5147850
    Abstract: The present invention provides a process for producing a superconducting material capable of elevating the Tc of oxide superconductors, in particular Bi-based superconductors. The feature of the present invention resides in a process for producing an oxide superconductor, in which a intermediate product or a product showing superconducting property is treated with a solution containing a compound having a reducing or oxidizing function. As the compound having a reducing function, compounds having two or more enolic hydroxy groups, cycloaliphatic polyhydric alcohol compounds or inorganic type reducing compounds are preferred. As the compound having oxidizing function, there can be mentioned, for example, carbonyl compounds, ozone, hydrogen peroxide, organic peroxide, dimethylsulfoxide and permanganate.
    Type: Grant
    Filed: April 3, 1991
    Date of Patent: September 15, 1992
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Nobuji Kishimoto, Hiroshi Yamamoto
  • Patent number: 4769358
    Abstract: A silver catalyst having fine silver particles dispersed and deposited fast on the outer surface of a porous inorganic refractory carrier and on the inner wall surface of pores in said carrier and used in the production of ethylene oxide by the catalytic gas-phase oxidation of ethylene with molecular oxygen, which silver catalyst is characterized by containing a compound of at least one metal ion selected from the group consisting of cesium, rubidium, potassium, and thallium (monovalent) as dispersed and deposited fast in an amount in the range of 1.times.10.sup.-6 to 5.times.10.sup.-6 gram equivalent per the unit surface area, m.sup.2, of said silver on the surface of said silver.
    Type: Grant
    Filed: November 12, 1986
    Date of Patent: September 6, 1988
    Assignee: Nippon Shokubai Kagaku Kogyo Co., Ltd.
    Inventors: Nobuji Kishimoto, Masaharu Kiriki, Minoru Saotome