Patents by Inventor Nobukazu Asano

Nobukazu Asano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240110848
    Abstract: A misfire determination apparatus for an internal combustion engine including a rotational speed detector detecting a rotational speed of an engine and a microprocessor. The microprocessor is configured to perform calculating a misfire parameter having a correlation with a change amount of the rotational speed in a combustion stroke of each of a plurality of cylinders and increasing as an increase amount of the rotational speed is large based on the rotational speed detected by the rotational speed detector, and determining that a single-cylinder misfire has occurred when the misfire parameter is less than a first predetermined value, while determining that the single-cylinder misfire or a multi-cylinder misfire has occurred when the misfire parameter is less than a second predetermined value greater than the first predetermined value.
    Type: Application
    Filed: September 26, 2023
    Publication date: April 4, 2024
    Inventors: Nobukazu Asano, Jun Iida, Satoshi Kozuka, Atsuhiro Miyauchi, Hayato Watanabe
  • Publication number: 20230408374
    Abstract: A misfire determination device, for an internal combustion engine, according to the present invention detects a combustion state parameter of the internal combustion engine, retrieves an extreme value of the combustion state parameter in an extreme value retrieval section from a start timing of a combustion stroke to a predetermined crank angle (step 5), upon retrieval of the extreme value, sets a predetermined crank angle section subsequent to a crank angle corresponding to the extreme value as a misfire determination parameter calculation section (step 6, expression 5), calculates a misfire determination parameter based on the combustion state parameter that has been detected in the misfire determination parameter calculation section (step 6), and determines a misfire based on the misfire determination parameter (steps 7 to 9).
    Type: Application
    Filed: June 15, 2023
    Publication date: December 21, 2023
    Inventors: Satoshi KOZUKA, Jun IIDA, Nobukazu ASANO, Hayato WATANABE, Naoyuki TANAKA, Bumpei NAKAYAMA
  • Publication number: 20230400002
    Abstract: A control apparatus, for an internal combustion engine, detects a rotational speed parameter (time parameter) that represents a rotational speed of the internal combustion engine including a plurality of cylinders, detects a single misfire that is a misfire for every ignition for each of the plurality of cylinders, based on the rotational speed parameter that has been detected in each combustion stroke of the plurality of cylinders (steps 2 to 7 and 9), counts, as a misfire counter value, the number of times that the single misfire has been detected for each of the plurality of cylinders (steps 8 and 10), determines whether the misfire is occurring in the cylinder, based on the misfire counter value (steps 11 to 12), and corrects an ignition timing of the cylinder that has been determined that the misfire is occurring to an advance angle side (steps 25, 26, and 34).
    Type: Application
    Filed: June 1, 2023
    Publication date: December 14, 2023
    Inventors: Hayato WATANABE, Satoshi KOZUKA, Jun IIDA, Nobukazu ASANO
  • Patent number: 5656793
    Abstract: A gas generator contains hydrazodicarbonamide serving as a reducing agent, oxoacid salt serving as an oxidizing agent, and a combustion controller which is catalytic or combustible. As a combustible combustion controller, boron, and zirconium are preferred. The gas generator includes a flame coolant containing at least one compound selected from the group consisting of hydrates of metal sulfates, hydrates of metal nitrates, hydrates of metal carbonates, metal hydroxides, and hydrates of metal hydroxides in which the metal moieties are selected from the III, IV, V, and VI Period metal of the Periodic Table. As a flame coolant, magnesium hydroxide is preferred.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: August 12, 1997
    Assignee: Eiwa Chemical Ind. Co., Ltd.
    Inventors: Koji Ochi, Nobukazu Asano, Kenji Harada, Keiji Sakumoto
  • Patent number: 5565710
    Abstract: There is provided a process for manufacturing a granular igniter, which facilitates control of the igniter preparation, handling of the granule igniter and improvement in manufacturized yield. The present invention also provides a process for manufacturing a granular igniter which is free from toxic gas generation when burned and which has excellent fluidity. The present invention moreover reduces the number of manufacturing process facilitating the production process, and reducing production costs.An igniter containing boron and potassium nitrate are mixed together with water in a homogenizer to form a homogeneous slurry. The mixing ratio of the igniter to the water is set in the range of 1.0:0.6 to 1.0:1.6 in terms of weight ratio. The slurry is sprayed in a spray dryer where it is dried and granulated. Micropowder, which failed to be collected as the granule, is recovered through a cyclone, and recirculated as the raw material.
    Type: Grant
    Filed: January 23, 1995
    Date of Patent: October 15, 1996
    Assignee: NOF Corporation
    Inventors: Koji Ochi, Nobukazu Asano, Yoshio Sawada
  • Patent number: 5563367
    Abstract: The gas generator composition contains sodium azide and an oxidizing agent as major components. This gas generator composition additionally contains 2 to 8% by weight of magnesium aluminate. To produce this composition, sodium azide and the oxidizing agent are admixed to a colloidal silica having a silica concentration of 3 to 15% by weight to form a slurry, followed by granulation and drying of the slurry.
    Type: Grant
    Filed: March 23, 1995
    Date of Patent: October 8, 1996
    Assignee: NOF Corporation
    Inventors: Koji Ochi, Kazuyuki Narita, Kazunori Matsuda, Nobukazu Asano
  • Patent number: 5482579
    Abstract: A gas generator composition, primarily containing perchlorate and cellulose acetate is provided to generate a large amount of gas without forming any substantial amount of harmful carbon monoxide. A metal oxide is additionally incorporated in an amount of more than 5% by weight and not more than 40% by weight. For example, 50 to 87% by weight of potassium perchlorate and 8 to 26% by weight of cellulose acetate are incorporated in the composition. The gas generator composition contains 36% by weight or less of bitetrazole metal hydrate, preferably bitetrazole manganese dihydrate, since it forms no corrosive residue after burning. The composition contains a nonmetallic compound consisting at least of nitrogen and hydrogen and containing at least 11% by weight of nitrogen. As such compound, nitroguanidine, guanidine nitrate, etc. is employed. The compounds preferably contains 10 to 83% by weight of nitrogen. The compound is preferably incorporated in an amount of 10 to 45% by weight.
    Type: Grant
    Filed: April 14, 1994
    Date of Patent: January 9, 1996
    Assignee: NOF Corporation
    Inventors: Koji Ochi, Nobukazu Asano, Kazunori Matsuda, Kiyoaki Yanase
  • Patent number: 5470406
    Abstract: The gas generator composition contains sodium azide and an oxidizing agent as major components. This gas generator composition additionally contains 2 to 8% by weight of magnesium aluminate. To produce this composition, sodium azide and the oxidizing agent are admixed to a colloidal silica having a silica concentration of 3 to 15% by weight to form a slurry, followed by granulation and drying of the slurry.
    Type: Grant
    Filed: April 7, 1993
    Date of Patent: November 28, 1995
    Assignee: NOF Corporation
    Inventors: Koji Ochi, Kazuyuki Narita, Kazunori Matsuda, Nobukazu Asano