Patents by Inventor Nobumoto Ohashi

Nobumoto Ohashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10337376
    Abstract: An exhaust gas purification system comprises a first fuel supply unit to supply fuel to exhaust gas flowing in an exhaust passage by a supply valve arranged in the exhaust passage, and a second fuel supply unit to supply fuel to exhaust gas by adjusting a fuel injection condition, wherein in a temperature raising stage of the NOx SCR catalyst associated with the exhaust gas temperature raising processing, first control is performed in which fuel is supplied by the first fuel supply unit, and in a temperature holding stage of the NOx SCR catalyst associated with the exhaust gas temperature raising processing, at least second control is performed in which the ratio of an amount of fuel supply by the second fuel supply unit with respect to an amount of fuel supply by the first fuel supply unit becomes higher in comparison with that when performing the first control.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: July 2, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akira Mikami, Shigeki Nakayama, Keishi Takada, Nobumoto Ohashi, Junichi Matsuo
  • Publication number: 20180328246
    Abstract: An exhaust gas purification system comprise a first fuel supply unit to supply fuel to exhaust gas flowing in an exhaust passage by a supply valve arranged in the exhaust passage, and a second fuel supply unit to supply fuel to exhaust gas by adjusting a fuel injection condition wherein in a temperature raising stage of the NOx SCR catalyst associated with the exhaust gas temperature raising processing, first control is performed in which fuel is supplied by the first fuel supply unit, and in a temperature holding stage of the NOx SCR catalyst associated with the exhaust gas temperature raising processing, at least second control is performed in which the ratio of an amount of fuel supply by the second fuel supply unit with respect to an amount of fuel supply by the first fuel supply unit becomes higher in comparison with that when performing the first control.
    Type: Application
    Filed: December 15, 2015
    Publication date: November 15, 2018
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akira Mikami, Shigeki Nakayama, Keishi Takada, Nobumoto Ohashi, Junichi Matsuo
  • Patent number: 10125647
    Abstract: An exhaust gas purification apparatus for an internal combustion engine comprises: a selective catalytic reduction (SCR) catalyst selectively reducing NOx in an exhaust gas of the internal combustion engine using ammonia as a reducing agent; a supply device adding an additive agent, such as ammonia, to the exhaust gas at an upstream side of the SCR catalyst; and a controller, when a temperature of SCR catalyst is higher than a predetermined temperature, increases a NOx concentration of the exhaust gas flowing into the SCR catalyst and increases an amount of addition of the additive agent in such a manner that a ratio of an amount of ammonia with respect to an amount of NOx contained in the exhaust gas flowing into the SCR catalyst, becomes large, as compared to when the temperature is equal to or less than the predetermined temperature.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: November 13, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akira Mikami, Shigeki Nakayama, Nobumoto Ohashi, Keishi Takada, Junichi Matsuo
  • Patent number: 9822683
    Abstract: An exhaust gas purification system for an internal combustion engine is provided with a filter including a selective catalytic reduction NOx catalyst carried thereon. Further, a post-catalyst is provided for an exhaust gas passage disposed on a downstream side from the filter. The post-catalyst has an oxidizing function, and the post-catalyst has such a function that the production of N2 based on the oxidation of ammonia is facilitated in a predetermined first temperature area. A filter regeneration process execution unit is programmed to control the temperature of the post-catalyst to be in the first temperature area while adjusting the temperature of the filter to be in a predetermined second temperature area lower than a filter regeneration temperature during a certain period of time.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: November 21, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshihisa Tsukamoto, Nobumoto Ohashi, Shigeki Nakayama, Akira Mikami, Kenji Sakurai, Hiroshi Otsuki, Junichi Matsuo, Keishi Takada, Ichiro Yamamoto
  • Patent number: 9662612
    Abstract: An object of the present invention is to appropriately remove, from an exhaust gas, HC, CO, and ammonia flowing out from a filter (SCRF) on which an SCR catalyst is carried. In the present invention, a post-catalyst 8 is provided for an exhaust gas passage of an internal combustion engine on a downstream side from SCRF along with a flow of the exhaust gas. The post-catalyst 8 is constructed to include an adsorption reduction part 81c which adsorbs ammonia and which reduces NOx by using ammonia as a reducing agent, a first oxidation part 81b which oxidizes ammonia, and a second oxidation part 82 which oxidizes HO and CO.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: May 30, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akira Mikami, Shigeki Nakayama, Nobumoto Ohashi, Keishi Takada, Kenji Sakurai, Yoshihisa Tsukamoto, Hiroshi Otsuki, Junichi Matsuo, Ichiro Yamamoto
  • Patent number: 9611811
    Abstract: The influenced of condensed water on an EGR device is alleviated. A device (100) that controls a cooling system including adjusting means for being able to adjust a circulation amount of coolant in a first flow passage, including an engine cooling flow passage, an EGR cooling flow passage and a radiator flow passage, and a second flow passage, including the engine cooling flow passage, the EGR cooling flow passage and a bypass flow passage and not including the radiator flow passage, includes: measuring means for measuring a temperature of the coolant; limiting means for limiting circulation of the coolant at starting an internal combustion engine; and control means for circulating the coolant preferentially through the second flow passage via control over the adjusting means based on the measured temperature in a period in which circulation of the coolant is limited.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: April 4, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobumoto Ohashi, Taro Aoyama, Naoya Okamoto, Yoshio Yamashita, Yuki Haba, Hajime Takagawa, Koki Uno, Naoki Takeuchi, Masashi Shinoda, Teruhiko Miyake, Koji Nakayama
  • Patent number: 9551261
    Abstract: An object is to suppress the occurrence of a failure in supply of urea water as much as possible in filling control of urea water in a pump share-type urea water supply system with two supply valves. In the pump share-type urea water supply system with a first supply valve and a second supply valve, a urea water tank is connected with the respective supply valves by a urea water supply path. The urea water supply path includes a first supply path for the first supply valve and a second supply path for the second supply valve. The second supply path has a larger capacity than the capacity of the first supply path by a predetermined volume.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 24, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Junichi Matsuo, Nobumoto Ohashi, Akira Mikami, Keishi Takada, Shigeki Nakayama
  • Publication number: 20170002709
    Abstract: An exhaust gas purification apparatus for an internal combustion engine comprises: a selective catalytic reduction (SCR) catalyst selectively reducing NOx in an exhaust gas of the internal combustion engine using ammonia as a reducing agent; a supply device adding an additive agent, such as ammonia, to the exhaust gas at an upstream side of the SCR catalyst; and a controller, when a temperature of SCR catalyst is higher than a predetermined temperature, increases a NOx concentration of the exhaust gas flowing into the SCR catalyst and increases an amount of addition of the additive agent in such a manner that a ratio of an amount of ammonia with respect to an amount of NOx contained in the exhaust gas flowing into the SCR catalyst, becomes large, as compared to when the temperature is equal to or less than the predetermined temperature.
    Type: Application
    Filed: November 27, 2014
    Publication date: January 5, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akira MIKAMI, Shigeki NAKAYAMA, Nobumoto OHASHI, Keishi TAKADA, Junichi MATSUO
  • Patent number: 9512769
    Abstract: A pump share-type urea water supply system includes a first supply valve and a second supply valve. A urea water tank is connected with the respective supply valves by a urea water supply path that includes a first supply path for the first supply valve and a second supply path for the second supply valve. The second supply path has a larger capacity than the first supply path by a predetermined volume. A suck-back control controls opening and closing of the respective supply valves such that a first estimated valve-opening time of the first supply valve for suck-back control in the first supply valve and supply path is shorter than a second estimated valve-opening time of the second supply valve for suck-back control in the second supply valve and in-the-second supply path by at least a first control time corresponding to the predetermined volume.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: December 6, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Junichi Matsuo, Nobumoto Ohashi, Akira Mikami, Keishi Takada, Shigeki Nakayama
  • Patent number: 9482133
    Abstract: In order to suppress ammonia from flowing out during regeneration treatment of a filter carrying an SCR catalyst, the prevent invention provides an exhaust emission control system of an internal combustion engine, including a first stage catalyst having an oxidation function, a fuel supply device configured to supply fuel to the first stage catalyst, a filter provided in the exhaust passage downstream of the first stage catalyst and carrying a selective redaction type NOx catalyst, an ammonia supply device configured to supply ammonia to the filter, a filter-regeneration-treatment executing unit configured to execute filter regeneration treatment, and a control unit configured to supply, when the filter regeneration treatment is not executed, the ammonia in an amount corresponding to an amount of the NOx emitted from the internal combustion engine, and to supply, when the filter regeneration treatment is executed, the ammonia in an amount corresponding to an amount of the NOx obtained by subtracting, from the
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: November 1, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keishi Takada, Nobumoto Ohashi, Shigeki Nakayama, Akira Mikami, Kenji Sakurai, Junichi Matsuo, Yoshihisa Tsukamoto, Hiroshi Otsuki, Ichiro Yamamoto
  • Patent number: 9464554
    Abstract: In an exhaust gas purification system for an internal combustion engine provided with a filter supporting an SCR catalyst, the present invention is intended to suppress HC and CO from being discharged to the outside at the time of the execution of filter regeneration processing, and to carry out the filter regeneration processing in an efficient manner. In the present invention, a post-catalyst having an oxidation function is arranged in an exhaust passage at the downstream side of the filter. Then, when the temperature of the post-catalyst is lower than a predetermined activation temperature at the time the execution of the filter regeneration processing is requested, the temperature of the post-catalyst is raised by carrying out control of raising the temperature of the exhaust gas discharged from the internal combustion engine, and control increasing the flow rate of the exhaust gas, before the execution of the filter regeneration processing.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: October 11, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Junichi Matsuo, Nobumoto Ohashi, Shigeki Nakayama, Kenji Sakurai, Akira Mikami, Keishi Takada, Yoshihisa Tsukamoto, Hiroshi Otsuki, Ichiro Yamamoto
  • Publication number: 20150361858
    Abstract: An object is to suppress the occurrence of a failure in supply of urea water as much as possible in filling control of urea water in a pump share-type urea water supply system with two supply valves. In the pump share-type urea water supply system with a first supply valve and a second supply valve, a urea water tank is connected with the respective supply valves by a urea water supply path. The urea water supply path includes a first supply path for the first supply valve and a second supply path for the second supply valve. The second supply path has a larger capacity than the capacity of the first supply path by a predetermined volume.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 17, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junichi MATSUO, Nobumoto OHASHI, Akira MIKAMI, Keishi TAKADA, Shigeki NAKAYAMA
  • Publication number: 20150361857
    Abstract: An object is to suppress the occurrence of a failure in supply of urea water as much as possible in suck-back control of urea water in a pump share-type urea water supply system with two supply valves. In the pump share-type urea water supply system with a first supply valve and a second supply valve, a urea water tank is connected with the respective supply valves by a urea water supply path. The urea water supply path includes a first supply path for the first supply valve and a second supply path for the second supply valve. The second supply path has a larger capacity than the capacity of the first supply path by a predetermined volume.
    Type: Application
    Filed: June 11, 2015
    Publication date: December 17, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junichi MATSUO, Nobumoto OHASHI, Akira MIKAMI, Keishi TAKADA, Shigeki NAKAYAMA
  • Publication number: 20150330275
    Abstract: An object of the present invention is to suppress a reduction in a NOx purification ratio accompanying filter regeneration processing in an exhaust gas purification system for an internal combustion engine that includes a filter carrying an SCR catalyst. In the present invention, the temperature of the filter is increased following completion of the filter regeneration processing by increasing the temperature of exhaust gas discharged from the internal combustion engine, and in so doing, HC adhered to the filter is removed.
    Type: Application
    Filed: December 26, 2012
    Publication date: November 19, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akira MIKAMI, Shigeki NAKAYAMA, Nobumoto OHASHI, Keishi TAKADA, Kenji SAKURAI, Yoshihisa TSUKAMOTO, Hiroshi OTSUKI, Junichi MATSUO, Ichiro YAMAMOTO
  • Publication number: 20150322837
    Abstract: In order to suppress ammonia from flowing out during regeneration treatment of a filter carrying an SCR catalyst, the prevent invention provides an exhaust emission control system, of an internal combustion engine, including a first stage catalyst having an oxidation function, a fuel supply device configured to supply fuel to the first stage catalyst, a filter provided in the exhaust passage downstream of the first stage catalyst and carrying a selective redaction type NOx catalyst, an ammonia supply device configured to supply ammonia to the filter, a filter-regeneration-treatment executing unit configured to execute filter regeneration treatment, and a control unit configured to supply, when the filter regeneration treatment is not executed, the ammonia in an amount corresponding to an amount of the NOx emitted from the internal combustion engine, and to supply, when the filter regeneration treatment is executed, the ammonia in an amount corresponding to an amount of the NOx obtained by subtracting, from th
    Type: Application
    Filed: December 18, 2012
    Publication date: November 12, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keishi TAKADA, Nobumoto OHASHI, Shigeki NAKAYAMA, Akira MIKAMI, Kenji SAKURAI, Junichi MATUO, Yoshihisa TSUKAMOTO, Hiroshi OTSUKI, Ichiro YAMAMOTO
  • Publication number: 20150308320
    Abstract: In an exhaust gas purification system for an internal combustion engine provided with a filter supporting an SCR catalyst, the present invention is intended to suppress HC and CO from being discharged to the outside at the time of the execution of filter regeneration processing, and to carry out the filter regeneration processing in an efficient manner. In the present invention, a post-catalyst having an oxidation function is arranged in an exhaust passage at the downstream side of the filter. Then, when the temperature of the post-catalyst is lower than a predetermined activation temperature at the time the execution of the filter regeneration processing is requested, the temperature of the post-catalyst is raised by carrying out control of raising the temperature of the exhaust gas discharged from the internal combustion engine, and control increasing the flow rate of the exhaust gas, before the execution of the filter regeneration processing.
    Type: Application
    Filed: December 3, 2012
    Publication date: October 29, 2015
    Inventors: Junichi MATSUO, Nobumoto OHASHI, Shigeki NAKAYAMA, Kenji SAKURAI, Akira MIKAMI, Keishi TAKADA, Yoshihisa TSUKAMOTO, Hiroshi OTSUKI, Ichiro YAMAMOTO
  • Publication number: 20150290587
    Abstract: An object of the present invention is to appropriately remove, from an exhaust gas, HC, CO, and ammonia flowing out from a filter (SCRF) on which an SCR catalyst is carried. In the present invention, a post-catalyst 8 is provided for an exhaust gas passage of an internal combustion engine on a downstream side from SCRF along with a flow of the exhaust gas. The post-catalyst 8 is constructed to include an adsorption reduction part 81c which adsorbs ammonia and which reduces NOx by using ammonia as a reducing agent, a first oxidation part 81b which oxidizes ammonia, and a second oxidation part 82 which oxidizes HO and CO.
    Type: Application
    Filed: November 16, 2012
    Publication date: October 15, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akira Mikami, Shigeki Nakayama, Nobumoto Ohashi, Keishi Takada, Kenji Sakurai, Yoshihisa Tsukamoto, Hiroshi Otsuki, Junichi Matsuo, Ichiro Yamamoto
  • Publication number: 20150292378
    Abstract: An object of the present invention is to suppress HC, CO, and NOx from being discharged to the outside when a filter regeneration process is executed in an exhaust gas purification system for an internal combustion engine provided with a filter including an SCR catalyst carried thereon. In the present invention, a post-catalyst is provided for an exhaust gas passage disposed on a downstream side from the filter. The post-catalyst has an oxidizing function, and the post-catalyst has such a function that the production of N2 based on the oxidation of ammonia is facilitated in a predetermined first temperature area. Further, when the filter regeneration process is executed, the temperature of the post-catalyst is adjusted to be in the first temperature area while adjusting the temperature of the filter to be in a predetermined second temperature area lower than a filter regeneration temperature during a certain period of time.
    Type: Application
    Filed: November 16, 2012
    Publication date: October 15, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshihisa Tsukamoto, Nobumoto Ohashi, Shigeki Nakayama, Akira Mikami, Kenji Sakurai, Hiroshi Otsuki, Junichi Matsuo, Keishi Takada, Ichiro Yamamoto
  • Publication number: 20150027387
    Abstract: The influenced of condensed water on an EGR device is alleviated. A device (100) that controls a cooling system including adjusting means for being able to adjust a circulation amount of coolant in a first flow passage, including an engine cooling flow passage, an EGR cooling flow passage and a radiator flow passage, and a second flow passage, including the engine cooling flow passage, the EGR cooling flow passage and a bypass flow passage and not including the radiator flow passage, includes: measuring means for measuring a temperature of the coolant; limiting means for limiting circulation of the coolant at starting an internal combustion engine; and control means for circulating the coolant preferentially through the second flow passage via control over the adjusting means based on the Measured temperature in a period in which circulation of the coolant is limited.
    Type: Application
    Filed: December 19, 2011
    Publication date: January 29, 2015
    Inventors: Nobumoto Ohashi, Taro Aoyama, Naoya Okamoto, Yoshio Yamashita, Yuki Haba, Hajime Takagawa, Koki Uno, Naoki Takeuchi, Masashi Shinoda, Teruhiko Miyake, Koji Nakayama
  • Patent number: 8522534
    Abstract: An internal combustion engine in an engine exhaust passage of which an NOx adsorption catalyst (12) adsorbing NOx contained in exhaust gas at the time of a low temperature and desorbing the adsorbed NOx when the temperature rises and an NOx storage catalyst (14) are arranged. When the NOx storage catalyst (14) can store NOx, the temperature of the NOx adsorption catalyst (12) is made to forcibly rise to a target temperature at which the amount of NOx which the NOx storage catalyst (14) can store is desorbed, and the NOx desorbed from the NOx adsorption catalyst (12) is stored in the NOx storage catalyst (14).
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: September 3, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kohei Yoshida, Takamitsu Asanuma, Nobumoto Ohashi, Yuichi Sobue, Kazunobu Ishibashi, Nobuyuki Takagi, Masao Watanabe, Masamichi Kuwajima, Takayuki Endo