Patents by Inventor Nobuo Miyadera

Nobuo Miyadera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8721192
    Abstract: An optical connecting structure has an optical fiber, a pressing member having a circular outer cross section, and an optical member, wherein the optical member has an optical element, an optical fiber stopper structure, and an optical fiber holding groove, wherein the optical fiber stopper structure is positioned between the optical element and the optical fiber holding groove, wherein the optical fiber is inserted along the optical fiber holding groove so as to contact with the optical fiber stopper structure, and wherein the pressing member is arranged on the optical fiber holding groove mutually perpendicular, the pressing member presses the upper surface of the optical fiber to a direction of a bottom of the optical fiber holding groove, and the optical fiber and the optical element are thereby optically connected.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: May 13, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Nobuo Miyadera, Toshihiro Kuroda, Shigeru Koibuchi, Kyouichi Sasaki
  • Patent number: 8564781
    Abstract: Provided is an SPR sensor which can achieve compaction and multichannel detection by simple configuration at a low cost. The SPR sensor comprises an optical path, and detection areas on the side surface thereof formed by laminating metal layers formed to cause surface plasmon resonance phenomenon. The SPR sensor is characterized in that two or more detection areas are formed for one optical path, a dielectric constant regulation layer is further laminated in at least one of the two or more detection areas, dielectric constant is regulated to have a different surface plasmon resonance in each detection area, and a dielectric constant regulation layer laminated in the at least one of the two or more detection areas functions as a layer exhibiting sensitivity to an object to be detected.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: October 22, 2013
    Assignees: Hitachi Chemical Company, Ltd., Niigata University
    Inventors: Nobuo Miyadera, Kenta Mizusawa, Kazunari Shinbo, Yasuo Ohdaira, Akira Baba, Keizo Kato, Futao Kaneko, Takahiro Kawakami
  • Publication number: 20110157593
    Abstract: Provided is an SPR sensor which can achieve compaction and multichannel detection by simple configuration at a low cost. The SPR sensor comprises an optical path, and detection areas on the side surface thereof formed by laminating metal layers formed to cause surface plasmon resonance phenomenon. The SPR sensor is characterized in that two or more detection areas are formed for one optical path, a dielectric constant regulation layer is further laminated in at least one of the two or more detection areas, dielectric constant is regulated to have a different surface plasmon resonance in each detection area, and a dielectric constant regulation layer laminated in the at least one of the two or more detection areas functions as a layer exhibiting sensitivity to an object to be detected.
    Type: Application
    Filed: August 21, 2009
    Publication date: June 30, 2011
    Inventors: Nobuo Miyadera, Kenta Mizusawa, Kazunari Shinbo, Yasuo Ohdaira, Akira Baba, Keizo Kato, Futao Kaneko, Takahiro Kawakami
  • Publication number: 20100310214
    Abstract: An optical connecting structure has an optical fiber, a pressing member having a circular outer cross section, and an optical member, wherein the optical member has an optical element, an optical fiber stopper structure, and an optical fiber holding groove, wherein the optical fiber stopper structure is positioned between the optical element and the optical fiber holding groove, wherein the optical fiber is inserted along the optical fiber holding groove so as to contact with the optical fiber stopper structure, and wherein the pressing member is arranged on the optical fiber holding groove mutually perpendicular, the pressing member presses the upper surface of the optical fiber to a direction of a bottom of the optical fiber holding groove, and the optical fiber and the optical element are thereby optically connected.
    Type: Application
    Filed: November 14, 2008
    Publication date: December 9, 2010
    Inventors: Nobuo Miyadera, Toshihiro Kuroda, Shigeru Koibuchi, Kyouichi Sasaki
  • Patent number: 7840108
    Abstract: Provided is a light branching optical waveguide including: at least one incident light waveguide (A) optically connected to one end of a multi-mode optical waveguide; and output light waveguides (B) larger in number than the incident light waveguide (A) optically connected to the other end thereof, the light branching optical waveguide being characterized in that: an intensity distribution of light incident from at least one optical waveguide (a) out of the incident light waveguide (A) on the multi-mode optical waveguide at a connecting surface of the incident light waveguide (A) and the multi-mode optical waveguide is asymmetric with respect to a geometrical central axis of the optical waveguide (a); and an extended line of the geometrical center axis of the optical waveguide (a) does not coincide with a geometrical central axis of the multi-mode optical waveguide.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: November 23, 2010
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Patent number: 7817889
    Abstract: An optical waveguide structure comprises a substrate (12) having first and second groove arrays (8, 10), including grooves (8a-8g, 10a-10h), and an optical waveguide (14), having cladding and core (14b) layered on the substrate between the groove arrays to vertically align the core with cores (2a, 4a) of optical fibers (2, 4) positioned on the grooves. The waveguide has at least one first port (20) aligned with a groove (8d) of the first groove array and at least one second port (22) aligned with a groove (10e) of the second groove array. The number of second ports is equal to or greater than that of the first ports. A ratio of the number of grooves of the second groove array relative to the number of grooves of the first groove array is less than a ratio of the number of the second ports relative to the number of first ports.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: October 19, 2010
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto, Shigeyuki Yagi
  • Patent number: 7664353
    Abstract: The present invention disclosed is an optical waveguide structure that has a first waveguide provided with the opposite ends A and B, a second waveguide with the opposite ends C and D, a third waveguide with the opposite ends E and F, and a coupling waveguide having its first beam incoming/outgoing end connected to the end B of the first waveguide and its second beam incoming/outgoing end connected to the end C of the second waveguide and the end E of the third waveguide. The optical waveguide is characterized in that the first waveguide and the coupling waveguide are longitudinally dimensioned so that light beam at its peak of light intensity can transit the point of axial mal-alignment at the end A of the first waveguide and further transit the axial zone at the second beam incoming/outgoing end of the coupling waveguide.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: February 16, 2010
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Rei Yamamoto, Nobuo Miyadera
  • Patent number: 7577328
    Abstract: An optical reflector, an optical multiplexer/demultiplexer device and an optical system which can allow more flexible arrangement of an optical filter thereof, and enhance performance of wavelength division multiplexing communication thereof are provided. An optical reflector according to the present invention comprises a first and second optical fiber 14, 16, each being connected to one side of an optical propagating region such as a rod lens 12 causing optical strength distributions depending on respective wavelengths of lights to be propagated in the optical propagating region; a mirror 18 disposed on the other side of the optical propagating region; and an optical filter 20 disposed between the first and second optical fibers 14, 16 and the mirror 18.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: August 18, 2009
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Patent number: 7574081
    Abstract: The present invention provides an optical system with waveguides, which comprises first, second and third optical input/output means (12, 14, 16), fourth and fifth multi-mode optical waveguides (20, 22) each capable of propagating light with plural propagation modes, and optical-filter mounting means (26) for mounting an optical filter (24) between the fourth and fifth multi-mode optical waveguides (20, 22) across a traveling direction of light in the fourth and fifth multi-mode optical waveguides (20, 22). The first optical input/output means (12) is connected to an end face of the fourth multi-mode optical waveguide (20) on a side thereof opposite to the optical-filter mounting means (26). Each of the second and third optical input/output means (14, 16) is connected to an end face of the fifth multi-mode optical waveguide (22) on a side opposite to the optical-filter mounting means (26).
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: August 11, 2009
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Patent number: 7546014
    Abstract: An optical directional coupler (1) comprises first and second straight optical waveguides (2, 3) having respective cores (2a, 3a) extending longitudinally close to each other to form an optical coupler portion, and a tapered optical waveguide (4) having a core (4a) connected to the core (2a) of the first straight waveguide (2). The core (2a) of the first straight waveguide (2) has a centerline (2d). A width of the core (4a) of the tapered waveguide (4) becomes narrow toward the first straight waveguide (2) and a profile of the tapered waveguide (4) is asymmetric relative to the centerline (2d) of the core (2a) of the first straight waveguides (2).
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: June 9, 2009
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Rei Yamamoto, Nobuo Miyadera
  • Patent number: 7496254
    Abstract: A curved optical waveguide comprising a core and a clad, characterized in that: the core shape of the curved optical waveguide has no reversal of a curvature on a halfway; and curvatures at both ends of the curved optical waveguide gradually approach zero. A curved optical waveguide comprising a core and a clad, characterized in that: the core shape of the curved optical waveguide has no reversal of a curvature on a halfway; a curvature at one end of the curved optical waveguide gradually approaches zero; and a radius of curvature at other end is finite. An optical waveguide comprising such a curved optical waveguide and an optical waveguide having a different core shape optically connected with the former, and an optical device using such a curved optical waveguide.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: February 24, 2009
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Patent number: 7457498
    Abstract: An optical waveguide structure has a single port on one input/output side, a plurality of ports on another input/output side and an S-curve optical waveguide portion arranged on the outermost side of the waveguide structure and including a first circular arc optical waveguide portion and a second circular arc optical waveguide portion connected thereto. The waveguide portion also has a third circular arc optical waveguide portion extending from a first splitting/coupling point side in the first circular arc waveguide portion toward the plural/ports side and having a curvature inverted relative to the first circular arc optical waveguide portion. At the first splitting/coupling point, a tangential line of the first circular arc optical waveguide portion and a tangential line of the third circular arc optical waveguide portion are parallel to and spaced from each other.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: November 25, 2008
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Patent number: 7450803
    Abstract: The invention is directed to an optical waveguide that reduces an excess loss caused in a curved waveguide region by a deviation of the center axis of a beam propagating mode from the center axis of the optical waveguide. The optical waveguide has its part curved, and assuming that the shortest distance from a certain point of a convex edge of the curved portion to a concave edge is a waveguide width at that point, the optical waveguide has its width progressively reduced from the maximum waveguide width in the midst of the curved portion toward the opposite ends of the curved portion.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: November 11, 2008
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Patent number: 7444050
    Abstract: The present invention relates to a curved optical waveguide which is free of any axis-deviation structure in the middle of the waveguide and which has a sigmoidal core shape, wherein the curvature thereof at one end is zero and the curvature thereof at the other end is finite (>0) and the use of such a curved optical waveguide permits the reduction of optical loss at the connected portions to the lowest possible level even when it is applied to, for instance, an optical splitter or a directional coupler and the curved optical waveguide of the present invention can provide an optical waveguide which never requires the use of any offset.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: October 28, 2008
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Publication number: 20080145054
    Abstract: An optical module (1) according to the present invention has an optical filter (6) having an input surface (2) and an output surface (4), an input core (8) connected to the input surface (2), and an output core (10) connected to the output surface (4). Assuming that light having a predetermined wavelength is input at an input position (14) and transmitted according to Snell's law, a position at which the light is output from the output surface (4) is referred to as a Snell output position (20). In an equivalent optical filter (6?), the output position (16) is located away from the Snell output position (20) in a direction away from the input position (14) by a distance (D) relating to a group delay.
    Type: Application
    Filed: January 29, 2008
    Publication date: June 19, 2008
    Inventors: Rei Yamamoto, Nobuo Miyadera, Toshihiro Kuroda
  • Patent number: 7373064
    Abstract: The present invention provides a polymeric optical waveguide film whose core and clad are constituted from polymer materials and which is characterized in that a protective layer of a polymer material having resistance to solvent attack higher than that observed for the clad is arranged on at least one of the surface and back face of the waveguide film. The present invention thus permits the preparation of such a film, the clad of which is hardly damaged, which is excellent in the resistance to solvent attack and which never undergoes cracking even when it is bought into contact with a commonly used solvent such as acetone.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: May 13, 2008
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Masatoshi Yamaguchi, Tooru Takahashi, Shigeru Koibuchi, Nobuo Miyadera
  • Patent number: 7289702
    Abstract: The present invention provides an optical module using optical waveguides which permits easy fabrication of a PLC type optical multiplexer/demultiplexer with reduced loss. The optical module comprises cores which are contiguous to each other through a dicing groove adapted to position and fix an optical functional part such as a wavelength selection filter and a core branched from the said cores. A slight gap is present between the former and the latter core and both cores are narrower in width in the vicinity of the dicing groove than the other portions.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: October 30, 2007
    Assignees: Hitachi, Ltd., Hitachi Chemical Co., Ltd.
    Inventors: Makoto Takahashi, Tatemi Ido, Hirohisa Sano, Nobuo Miyadera
  • Publication number: 20070230868
    Abstract: An optical reflector, an optical multiplexer/demultiplexer device and an optical system which can allow more flexible arrangement of an optical filter thereof, and enhance performance of wavelength division multiplexing communication thereof are provided. An optical reflector according to the present invention comprises a first and second optical fiber 14, 16, each being connected to one side of an optical propagating region such as a rod lens 12 causing optical strength distributions depending on respective wavelengths of lights to be propagated in the optical propagating region; a mirror 18 disposed on the other side of the optical propagating region; and an optical filter 20 disposed between the first and second optical fibers 14, 16 and the mirror 18.
    Type: Application
    Filed: May 15, 2007
    Publication date: October 4, 2007
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Publication number: 20070154141
    Abstract: A curved optical waveguide comprising a core and a clad, characterized in that: the core shape of the curved optical waveguide has no reversal of a curvature on a halfway; and curvatures at both ends of the curved optical waveguide gradually approach zero. A curved optical waveguide comprising a core and a clad, characterized in that: the core shape of the curved optical waveguide has no reversal of a curvature on a halfway; a curvature at one end of the curved optical waveguide gradually approaches zero; and a radius of curvature at other end is finite. An optical waveguide comprising such a curved optical waveguide and an optical waveguide having a different core shape optically connected with the former, and an optical device using such a curved optical waveguide.
    Type: Application
    Filed: January 20, 2005
    Publication date: July 5, 2007
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Publication number: 20070154145
    Abstract: An optical waveguide structure (6) comprises a substrate (12) having a first groove array (8) and a second groove array (10) which are longitudinally spaced from each other, and an optical waveguide (14) layered on the substrate (12) between the first and second groove arrays (8, 10). Each groove array (8, 10) includes a plurality of grooves (8a-8g, 10a-10h) extending longitudinally and arranged laterally relative to each other. The optical waveguide (14) has a cladding layered on the substrate (14), and a core (14b) formed on the cladding so that, when optical fibers (2, 4) are supported and positioned on the grooves (8a-8g, 10a-10h) of the first and second groove arrays (8, 10), the core (14b) of the optical waveguide (14) is aligned with cores (2a, 4a) of the optical fibers (2, 4) at the same level in an vertical direction.
    Type: Application
    Filed: December 18, 2006
    Publication date: July 5, 2007
    Inventors: Nobuo Miyadera, Rei Yamamoto, Shigeyuki Yagi