Patents by Inventor Nobuo NAKASONE

Nobuo NAKASONE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11674233
    Abstract: To provide a Sn-based plated steel sheet capable of exhibiting superior corrosion resistance, yellowing resistance, coating film adhesiveness, and sulphide stain resistance without using a chromate film. A Sn-based plated steel sheet of the present invention includes: a steel sheet; a Sn-based plating layer located on at least one surface of the steel sheet; and a coating layer located on the Sn-based plating layer, wherein the Sn-based plating layer contains 1.0 g/m2 to 15.0 g/m2 of Sn per side in terms of metal Sn, the coating layer contains zirconium oxide, and a content of the zirconium oxide is 1.0 mg/m2 to 10.0 mg/m2 per side in terms of metal Zr, the zirconium oxide includes zirconium oxide with an amorphous structure, and a crystalline layer whose main component is zirconium oxide with a crystalline structure is present on an upper layer of the zirconium oxide with the amorphous structure.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: June 13, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shintaro Yamanaka, Hirokazu Yokoya, Yasuhiko Sato, Hiroaki Ando, Nobuo Nakasone
  • Publication number: 20230102675
    Abstract: To provide a Sn-based plated steel sheet capable of exhibiting superior corrosion resistance, yellowing resistance, coating film adhesiveness, and sulphide stain resistance without using a chromate film. A Sn-based plated steel sheet of the present invention includes: a steel sheet; a Sn-based plating layer located on at least one surface of the steel sheet; and a coating layer located on the Sn-based plating layer, wherein the Sn-based plating layer contains 1.0 g/m2 to 15.0 g/m2 of Sn per side in terms of metal Sn, the coating layer contains zirconium oxide, and a content of the zirconium oxide is 1.0 mg/m2 to 10.0 mg/m2 per side in terms of metal Zr, the zirconium oxide includes zirconium oxide with an amorphous structure, and a crystalline layer whose main component is zirconium oxide with a crystalline structure is present on an upper layer of the zirconium oxide with the amorphous structure.
    Type: Application
    Filed: February 1, 2021
    Publication date: March 30, 2023
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Shintaro YAMANAKA, Hirokazu YOKOYA, Yasuhiko SATO, Hiroaki ANDO, Nobuo NAKASONE
  • Patent number: 11598009
    Abstract: A Sn-plated steel sheet including a base plated steel sheet having a steel sheet, a Sn-plated layer on at least one surface of the steel sheet, and a film layer containing a zirconium oxide and a tin oxide. An adhesion amount of Sn per surface of the Sn-plated steel sheet is 0.1 g/m2 or more and 15 g/m2 or less, an amount of the zirconium oxide in the film layer is in a range of 1 mg/m2 or more and 30 mg/m2 or less in terms of an amount of metal Zr, a peak position of a binding energy of Sn3d5/2 of the tin oxide is 1.4 eV or more and less than 1.6 eV from a peak position of a binding energy of metal Sn, and a quantity of electricity required for reduction of the tin oxide is more than 5.0 mC/cm2 and 20 mC/cm2 or less.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: March 7, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shintaro Yamanaka, Masakazu Noda, Yasuhiko Sato, Nobuo Nakasone
  • Publication number: 20200399765
    Abstract: This Sn-plated steel sheet includes: a base plated steel sheet having a steel sheet, and a Sn-plated layer on at least one surface of the steel sheet; and a film layer which contains a zirconium oxide and a tin oxide and is positioned on the base plated steel sheet. An adhesion amount of Sn per surface of the Sn-plated steel sheet is 0.1 g/m2 or more and 15 g/m2 or less, an amount of the zirconium oxide in the film layer is in a range of 1 mg/m2 or more and 30 mg/m2 or less in terms of an amount of metal Zr, a peak position of a binding energy of Sn3d5/2 of the tin oxide by X-ray photoelectron spectroscopy in the film layer is within a range of 1.4 eV or more and less than 1.6 eV from a peak position of a binding energy of metal Sn, and a quantity of electricity required for reduction of the tin oxide is in a range of more than 5.0 mC/cm2 and 20 mC/cm2 or less.
    Type: Application
    Filed: March 1, 2019
    Publication date: December 24, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Shintaro YAMANAKA, Masakazu NODA, Yasuhiko SATO, Nobuo NAKASONE