Patents by Inventor Nobusato Kojima

Nobusato Kojima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230034898
    Abstract: A hot-rolled steel sheet has a predetermined chemical composition in which a microstructure includes 99% or more of martensite by volume fraction and a remainder in microstructure including residual austenite and ferrite, in a cross section parallel to a rolling direction, an average aspect ratio of prior austenite grains is less than 3.0, a proportion of sulfides having an aspect ratio of more than 3.0 among sulfides having an area of 1.0 ?m2 or more is 1.0% or, less, in a thickness middle portion, and a pole density of {211} <011> orientation is 3.0 or less, and a tensile strength TS is 980 MPa or higher.
    Type: Application
    Filed: January 29, 2021
    Publication date: February 2, 2023
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Masaharu OKA, Nobusato KOJIMA, Mitsuru YOSHIDA
  • Patent number: 11313009
    Abstract: A hot-rolled steel sheet according to an aspect of the present invention has a predetermined chemical composition, in which, in a location at a depth of ¼ of a sheet thickness from a surface, an area ratio of ferrite is 10% to 55%, a total area ratio of bainite and martensite is 45% to 90%, a total area ratio of the ferrite, the bainite, and the martensite is 90% or more, an average crystal grain size is 12.0 ?m or less, in a texture measured in a sheet thickness central portion, a maximum pole density of orientation groups of {100} <011>, {211} <011>, {311} <011>, {110} <011>, and {332} <113> is 8.0 or less, a total of pole densities of {211} <011> and {332} <113> is 10.0 or less, and a tensile strength is 950 MPa or more.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: April 26, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Mitsuru Yoshida, Nobusato Kojima, Yuuki Kanzawa, Kohhei Kamiya
  • Publication number: 20220025499
    Abstract: This steel sheet has a predetermined chemical composition and the steel sheet in which, at a ¼ depth position of a sheet thickness from a surface, an average grain size is 15.0 ?m or less, a total grain boundary number density of solute C and solute B is 1.0 solute/nm2 or more and 12.0 solutes/nm2 or less, a total of pole densities of {211}<011> and {332}<113> in a thickness middle portion is 12.0 or less, and a tensile strength is 780 MPa or more is adopted.
    Type: Application
    Filed: March 3, 2020
    Publication date: January 27, 2022
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Mitsuru YOSHIDA, Nobusato KOJIMA
  • Publication number: 20210140005
    Abstract: A hot-rolled steel sheet according to an aspect of the present invention has a predetermined chemical composition, in which, in a location at a depth of ¼ of a sheet thickness from a surface, an area ratio of ferrite is 10% to 55%, a total area ratio of bainite and martensite is 45% to 90%, a total area ratio of the ferrite, the bainite, and the martensite is 90% or more, an average crystal grain size is 12.0 ?m or less, in a texture measured in a sheet thickness central portion, a maximum pole density of orientation groups of {100} <011>, {211} <011>, {311} <011>, {110} <011>, and {332} <113>is 8.0 or less, a total of pole densities of {211} <011>and {332} <113> is 10.0 or less, and a tensile strength is 950 MPa or more.
    Type: Application
    Filed: July 6, 2018
    Publication date: May 13, 2021
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Mitsuru YOSHIDA, Nobusato KOJIMA, Yuuki KANZAWA, Kohhei KAMIYA
  • Patent number: 10907236
    Abstract: A steel sheet for a drawn can has a predetermined chemical composition and has a ferrite single-phase structure with a crystal grain size number of 11.0 or more, the sheet thickness is 0.15 to 0.50 mm, in an L direction of the steel sheet after an ageing treatment at 100° C. for one hour, an yield strength YP is 220 to 290 MPa, a tensile strength TS is 330 to 390 MPa, a total elongation EL is 32% or more, an yield point elongation YP-EL is 0%, an average plastic strain ratio rm is more than 1.35, and an in-plane anisotropy ?r is ?0.30 to +0.15.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: February 2, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Masaharu Oka, Nobusato Kojima, Yuta Dairokuno, Michihiro Nono
  • Patent number: 10815553
    Abstract: Provided is a galvannealed steel sheet having high strength and excellent deep drawability, and being further excellent in slab cracking resistance and secondary working embrittlement resistance. A base metal steel sheet of the galvannealed steel sheet has a chemical composition containing, in mass %: C: 0.0080% or less; Si: 0.7% or less; Mn: 1.0 to 2.5%; P: more than 0.030 to 0.048%; S: 0.025% or less; Al: 0.005 to 0.20%; N: 0.010% or less; Ti: 0.005 to 0.040%; Nb: 0.005 to 0.060%; and B: 0.0005 to 0.0030%, with the balance being Fe and impurities, satisfying Formula (1) to (4). A galvannealed layer contains 7 to 15 mass % of Fe. 25×P+4×Si?3.6??(1) B?X1?0.0005??(2) C?(12/93)×Nb?X2??0.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: October 27, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Masaharu Oka, Nobusato Kojima, Tetsuya Okada
  • Patent number: 10718033
    Abstract: A heat-treated steel material is provided having strength of 2.000 GPa or more. The heat-treated steel material includes a chemical composition represented by, in mass %: C: 0.05% to 0.30%; Si: 0.50% to 5.00%; Mn: 2.0% to 10.0%; Cr: 0.01% to 1.00%; Ti: 0.010% to 0.100%; B: 0.0020% to 0.0100%; P: 0.050% or less; S: 0.0500% or less; N: 0.0100% or less; Ni: 0% to 2.0%; each of Cu, Mo, and V: 0% to 1.0%; each of Al and Nb: 0% to 1.00%; and the balance: Fe and impurities. “4612×[C]+51×[Si]+102×[Mn]+605>2000” is satisfied. The heat-treated steel material includes a microstructure in which 90 volume % or more is formed of martensite, and a dislocation density in the martensite is equal to or more than 1.2×1016 m?2.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: July 21, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinichiro Tabata, Kazuo Hikida, Nobusato Kojima
  • Patent number: 10662494
    Abstract: A heat-treated steel material is provided having strength of 1.800 GPa or more. The heat-treated steel material includes a chemical composition represented by, in mass %: C: 0.05% to 0.30%; Mn: 2.0% to 10.0%; Cr: 0.01% to 1.00%; Ti: 0.010% to 0.100%; B: 0.0010% to 0.0100%; Si: 0.08% or less; P: 0.050% or less; S: 0.0500% or less; N: 0.0100% or less; Ni: 0% to 2.0%; each of Cu, Mo, and V: 0% to 1.0%; each of Al and Nb: 0% to 1.00%; and the balance: Fe and impurities. “4612×[C]+102×[Mn]+605?1800” is satisfied where [C] denotes a C content and [Mn] denotes a Mn content. The heat-treated steel material includes a microstructure in which 90 volume % or more is formed of martensite, and a dislocation density in the martensite is equal to or more than 9.0×1015 m?2.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: May 26, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinichiro Tabata, Kazuo Hikida, Nobusato Kojima
  • Patent number: 10603703
    Abstract: The present invention provides a method of manufacturing a press-formed product. The method includes: a first process of preparing a material that is long in a first direction, and when viewed in a cross-section perpendicular to the first direction, the cross-section is a hollow cross-section that is long in a second direction perpendicular to the first direction; and a second process of bending the material in a direction intersecting the second direction when viewed from the first direction, by pressing the material along the second direction.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: March 31, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Eiji Isogai, Nobusato Kojima, Riki Okamoto, Yutaka Mikazuki
  • Publication number: 20200048730
    Abstract: A steel sheet for a drawn can has a predetermined chemical composition and has a ferrite single-phase structure with a crystal grain size number of 11.0 or more, the sheet thickness is 0.15 to 0.50 mm, in an L direction of the steel sheet after an ageing treatment at 100° C. for one hour, an yield strength YP is 220 to 290 MPa, a tensile strength TS is 330 to 390 MPa, a total elongation EL is 32% or more, an yield point elongation YP-EL is 0%, an average plastic strain ratio rm is more than 1.35, and an in-plane anisotropy ?r is ?0.30 to +0.15.
    Type: Application
    Filed: April 19, 2018
    Publication date: February 13, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Masaharu OKA, Nobusato KOJIMA, Yuta DAIROKUNO, Michihiro NONO
  • Patent number: 10435761
    Abstract: A heat-treated steel material includes: a chemical composition expressed by, in mass %: C: 0.16% to 0.38%; Mn: 0.6% to 1.5%; Cr: 0.4% to 2.0%; Ti: 0.01% to 0.10%; B: 0.001% to 0.010%; Si: 0.20% or less; P: 0.05% or less; S: 0.05% or less; N: 0.01% or less; Ni: 0% to 2.0%; Cu: 0% to 1.0%; Mo: 0% to 1.0%; V: 0% to 1.0%; Al: 0% to 1.0%; Nb: 0% to 1.0%; REM: 0% to 0.1%; and the balance: Fe and impurities; and a structure expressed by: retained austenite: 1.5 volume % or less; and the balance: martensite.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: October 8, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinichiro Tabata, Kazuo Hikida, Nobusato Kojima, Naomitsu Mizui
  • Publication number: 20190218637
    Abstract: A manufacturing method of a steel component includes: heating a steel sheet in a carburizing atmosphere to form a carburized layer on a surface of the steel sheet, the steel sheet having: a chemical composition represented by: in mass %, C: 0.0005 to 0.1%; Si: 0.01 to 2.0%; Mn: 0.05 to 3.0%; Al: 0.9% or less; P: 0.05% or less; S: 0.01% or less; Ti: 0.0 to 0.2%; Nb: 0.0 to 0.1%; Cr: 0 to 2%; Mo: 0.0 to 0.2%; B: 0.000 to 0.005%; and the balance: Fe and impurities; and a steel structure represented by ferrite with an area fraction of 70% or more; and forming the steel sheet by using metal dies, and performing quenching on the steel sheet in a state of housing the steel sheet in the metal dies to transform the carburized layer into martensite and make a part of the steel sheet on the further inside than the carburized layer to be a steel structure represented by ferrite with an area fraction of 50% or more.
    Type: Application
    Filed: October 31, 2016
    Publication date: July 18, 2019
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Riki OKAMOTO, Nobusato KOJIMA, Kazuo HIKIDA, Noriyuki MAEKAWA
  • Publication number: 20180258514
    Abstract: Provided is a galvannealed steel sheet having high strength and excellent deep drawability, and being further excellent in slab cracking resistance and secondary working embrittlement resistance. A base metal steel sheet of the galvannealed steel sheet has a chemical composition containing, in mass %: C: 0.0080% or less; Si: 0.7% or less; Mn: 1.0 to 2.5%; P: more than 0.030 to 0.048%; S: 0.025% or less; Al: 0.005 to 0.20%; N: 0.010% or less; Ti: 0.005 to 0.040%; Nb: 0.005 to 0.060%; and B: 0.0005 to 0.0030%, with the balance being Fe and impurities, satisfying Formula (1) to (4). A galvannealed layer contains 7 to 15 mass % of Fe. 25×P+4×Si?3.6??(1) B?X1?0.0005??(2) C?(12/93)×Nb?X2??0.
    Type: Application
    Filed: August 22, 2016
    Publication date: September 13, 2018
    Inventors: Masaharu OKA, Nobusato KOJIMA, Tetsuya OKADA
  • Patent number: 10060005
    Abstract: A high-strength hot-formed steel sheet member exhibiting both a consistent hardness and delayed-fracture resistance, and is characterized in that: the high-strength hot-formed steel sheet member has a prescribed chemical composition; the degree of Mn segregation ? (=[maximum Mn concentration (mass %) at the sheet center in the thickness direction]/[average Mn concentration (mass %) at a depth of ¼ of the total thickness of the sheet from the surface]) is less than or equal to 1.6; the steel purity value as defined in JIS G 0555 (2003) is less than or equal to 0.08%; the average grain size for prior ? grains is less than or equal to 10 ?m; and the number density of the residual carbides is less than or equal to 4×103 particles/mm2.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: August 28, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuo Hikida, Shinichiro Tabata, Nobusato Kojima, Takahiro Moriki
  • Publication number: 20170232492
    Abstract: The present invention provides a method of manufacturing a press-formed product. The method includes: a first process of preparing a material that is long in a first direction, and when viewed in a cross-section perpendicular to the first direction, the cross-section is a hollow cross-section that is long in a second direction perpendicular to the first direction; and a second process of bending the material in a direction intersecting the second direction when viewed from the first direction, by pressing the material along the second direction.
    Type: Application
    Filed: September 30, 2015
    Publication date: August 17, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Eiji ISOGAI, Nobusato KOJIMA, Riki OKAMOTO, Yutaka MIKAZUKI
  • Publication number: 20170096724
    Abstract: A high-strength hot-formed steel sheet member exhibiting both a consistent hardness and delayed-fracture resistance, and is characterized in that: the high-strength hot-formed steel sheet member has a prescribed chemical composition; the degree of Mn segregation ? (=[maximum Mn concentration (mass %) at the sheet center in the thickness direction]/[average Mn concentration (mass %) at a depth of ¼ of the total thickness of the sheet from the surface]) is less than or equal to 1.6; the steel purity value as defined in JIS G 0555 (2003) is less than or equal to 0.08%; the average grain size for prior ? grains is less than or equal to 10 ?m; and the number density of the residual carbides is less than or equal to 4×103 particles/mm2.
    Type: Application
    Filed: March 26, 2015
    Publication date: April 6, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuo HIKIDA, Shinichiro TABATA, Nobusato KOJIMA, Takahiro MORIKI
  • Publication number: 20170081741
    Abstract: The present invention provides a heat-treated steel material having strength of 1.800 GPa or more with obtaining excellent toughness and weldability. The heat-treated steel material includes a chemical composition represented by, in mass %: C: 0.05% to 0.30%; Mn: 2.0% to 10.0%; Cr: 0.01% to 1.00%; Ti: 0.010% to 0.100%; B: 0.0010% to 0.0100%; Si: 0.08% or less; P: 0.050% or less; S: 0.0500% or less; N: 0.0100% or less; Ni: 0% to 2.0%; each of Cu, Mo, and V: 0% to 1.0%; each of Al and Nb: 0% to 1.00%; and the balance: Fe and impurities. “4612×[C]+102×[Mn]+605?1800” is satisfied where [C] denotes a C content and [Mn] denotes a Mn content. The heat-treated steel material includes a microstructure in which 90 volume % or more is formed of martensite, and a dislocation density in the martensite is equal to or more than 9.0×1015 m?2.
    Type: Application
    Filed: May 26, 2015
    Publication date: March 23, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shinichiro TABATA, Kazuo HIKIDA, Nobusato KOJIMA
  • Publication number: 20170081742
    Abstract: The present invention provides a heat-treated steel material having strength of 2.000 GPa or more with obtaining excellent toughness and weldability. The heat-treated steel material includes a chemical composition represented by, in mass %: C: 0.05% to 0.30%; Si: 0.50% to 5.00%; Mn: 2.0% to 10.0%; Cr: 0.01% to 1.00%; Ti: 0.010% to 0.100%; B: 0.0020% to 0.0100%; P: 0.050% or less; S: 0.0500% or less; N: 0.0100% or less; Ni: 0% to 2.0%; each of Cu, Mo, and V: 0% to 1.0%; each of Al and Nb: 0% to 1.00%; and the balance: Fe and impurities. “4612×[C]+51×[Si]+102×[Mn]+605?2000” is satisfied where [C] denotes a C content, [Si] denotes a Si content, and [Mn] denotes a Mn content. The heat-treated steel material includes a microstructure in which 90 volume % or more is formed of martensite, and a dislocation density in the martensite is equal to or more than 1.2×1016 m?2.
    Type: Application
    Filed: May 26, 2015
    Publication date: March 23, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shinichiro TABATA, Kazuo HIKIDA, Nobusato KOJIMA
  • Publication number: 20170073792
    Abstract: A hot-formed steel sheet member having a chemical composition includes, in terms of mass %, from 0.08 to 0.16% of C, 0.19% or less of Si, from 0.40 to 1.50% of Mn, 0.02% or less of P, 0.01% or less of S, from 0.01 to 1.0% of sol. Al, 0.01% or less of N, from 0.25 to 3.00% of Cr, from 0.01 to 0.05% of Ti, from 0.001 to 0.01% of B, and a reminder consisting of Fe and impurities, wherein a total volume fraction of martensite, tempered martensite, and bainite is 50% or more, and a volume fraction of ferrite is 3% or less, an average grain size of prior ? grains is 10 ?m or less, and a number density of residual carbides which are present is 4×103 per mm2 or less.
    Type: Application
    Filed: May 15, 2015
    Publication date: March 16, 2017
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuo HIKIDA, Nobusato KOJIMA, Shinichiro TABATA
  • Publication number: 20160102380
    Abstract: A heat-treated steel material includes: a chemical composition expressed by, in mass %: C: 0.16% to 0.38%; Mn: 0.6% to 1.5%; Cr: 0.4% to 2.0%; Ti: 0.01% to 0.10%; B: 0.001% to 0.010%; Si: 0.20% or less; P: 0.05% or less; S: 0.05% or less; N: 0.01% or less; Ni: 0% to 2.0%; Cu: 0% to 1.0%; Mo: 0% to 1.0%; V: 0% to 1.0%; Al: 0% to 1.0%; Nb: 0% to 1.0%; REM: 0% to 0.1%; and the balance: Fe and impurities; and a structure expressed by: retained austenite: 1.5 volume % or less; and the balance: martensite.
    Type: Application
    Filed: June 6, 2014
    Publication date: April 14, 2016
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shinichiro TABATA, Kazuo HIKIDA, Nobusato KOJIMA, Naomitsu MIZUI