Patents by Inventor Nobuyoshi Ozawa

Nobuyoshi Ozawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10251558
    Abstract: A method and an apparatus for measuring and displaying dental plaque are provided, and the method includes the steps of dividing near infrared light output from a light source into measurement light and reference light, applying the measurement light toward a tooth in an oral cavity and scanning the tooth with the measurement light, producing interference light from reflected light and back-scattered light from the tooth and the reference light, generating an optical coherence tomographic image based on a scattering intensity value of the interference light, extracting a dental plaque region having a specific scattering intensity value from the optical coherence tomographic image, and quantifying the dental plaque. A method and an apparatus for measuring and displaying gingiva and/or alveolar bone are further provided. A method and an apparatus for quantifying dental plaque, digitizing the dental plaque, and generating an image of the dental plaque in a noncontact, noninvasive manner are thereby provided.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: April 9, 2019
    Assignee: National Center for Geriatrics and Gerontology
    Inventors: Yasunori Sumi, Nobuyoshi Ozawa, Yohei Gonda
  • Publication number: 20160360969
    Abstract: A method and an apparatus for measuring and displaying dental plaque are provided, and the method includes the steps of dividing near infrared light output from a light source into measurement light and reference light, applying the measurement light toward a tooth in an oral cavity and scanning the tooth with the measurement light, producing interference light from reflected light and back-scattered light from the tooth and the reference light, generating an optical coherence tomographic image based on a scattering intensity value of the interference light, extracting a dental plaque region having a specific scattering intensity value from the optical coherence tomographic image, and quantifying the dental plaque. A method and an apparatus for measuring and displaying gingiva and/or alveolar bone are further provided. A method and an apparatus for quantifying dental plaque, digitizing the dental plaque, and generating an image of the dental plaque in a noncontact, noninvasive manner are thereby provided.
    Type: Application
    Filed: August 8, 2016
    Publication date: December 15, 2016
    Inventors: Yasunori Sumi, Nobuyoshi Ozawa, Yohei Gonda
  • Patent number: 9445724
    Abstract: A method and an apparatus for measuring and displaying dental plaque are provided, and the method includes the steps of dividing near infrared light output from a light source into measurement light and reference light, applying the measurement light toward a tooth in an oral cavity and scanning the tooth with the measurement light, producing interference light from reflected light and back-scattered light from the tooth and the reference light, generating an optical coherence tomographic image based on a scattering intensity value of the interference light, extracting a dental plaque region having a specific scattering intensity value from the optical coherence tomographic image, and quantifying the dental plaque. A method and an apparatus for measuring and displaying gingiva and/or alveolar bone are further provided. A method and an apparatus for quantifying dental plaque, digitizing the dental plaque, and generating an image of the dental plaque are further provided.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: September 20, 2016
    Assignee: National Center for Geriatrics and Gerontology
    Inventors: Yasunori Sumi, Nobuyoshi Ozawa, Yohei Gonda
  • Publication number: 20150182120
    Abstract: A method and an apparatus for measuring and displaying dental plaque are provided, and the method includes the steps of dividing near infrared light output from a light source into measurement light and reference light, applying the measurement light toward a tooth in an oral cavity and scanning the tooth with the measurement light, producing interference light from reflected light and back-scattered light from the tooth and the reference light, generating an optical coherence tomographic image based on a scattering intensity value of the interference light, extracting a dental plaque region having a specific scattering intensity value from the optical coherence tomographic image, and quantifying the dental plaque. A method and an apparatus for measuring and displaying gingiva and/or alveolar bone are further provided. A method and an apparatus for quantifying dental plaque, digitizing the dental plaque, and generating an image of the dental plaque are further provided.
    Type: Application
    Filed: July 12, 2013
    Publication date: July 2, 2015
    Inventors: Yasunori Sumi, Nobuyoshi Ozawa, Yohei Gonda
  • Publication number: 20120322025
    Abstract: A dental CAD/CAM device capable of accurately forming a dental coating is provided. The device includes: an intraoral-site measurement section 100 configured to measure 3D shape data on an intraoral site 130 with an OCT probe 150 for obtaining a tomogram of an object using near-ultraviolet light; a treatment-target-tooth 3D shape data acquisition section 200 configured to acquire shape data of a treatment target tooth from 3D shape data obtained by the intraoral-site measurement section 100; and a coating object 3D shape data creation section 300 configured to create 3D shape data on a dental coating such that the dental coating matches the 3D shape data of the treatment target tooth obtained by the treatment target tooth 3D shape data acquisition section 200.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Applicant: JAPAN HEALTH SCIENCES FOUNDATION
    Inventors: Nobuyoshi Ozawa, Yasunori Sumi