Patents by Inventor Nobuyuki Arai

Nobuyuki Arai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120177409
    Abstract: Each scanning optical system includes a first scanning lens and a second scanning lens through which a light beam is incident onto the first scanning lens. The second scanning lens of each scanning optical system is disposed at the optically most downstream side in the scanning optical system and has an optical plane that has the strongest power in a sub-scanning corresponding direction. In addition, the optical plane of each second scanning lens, which has the strongest power in the sub-scanning corresponding direction, is located under the shaft bearings of neighboring polygon mirrors in the vertical direction.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 12, 2012
    Inventors: Nobuyuki Arai, Makoto Hirakawa, Naoki Miyatake, Naoto Watanabe, Tadashi Nakamura
  • Patent number: 8137798
    Abstract: A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2). (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 20, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Nobuyuki Arai, Norimitsu Natsume, Kenichi Yoshioka, Junko Kawasaki, Hiroshi Takezaki
  • Publication number: 20120058297
    Abstract: A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2) (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
    Type: Application
    Filed: August 1, 2011
    Publication date: March 8, 2012
    Inventors: Nobuyuki ARAI, Norimitsu Natsume, Kenichi Yoshioka, Junko Kawasaki, Hiroshi Takezaki
  • Patent number: 8102411
    Abstract: An optical scanner includes a housing and an intermediate member that includes a first joining surface and a second joining surface. The first joining surface is attached to the housing and the second joining surface is attached to at least one optical element of any one of a first optical system and a second optical system. In a three-dimensional coordinate in which a first one of coordinate axes is a direction that is parallel to both the first joining surface and the second joining surface, a second range on the first coordinate axis corresponding to the second joining surface includes a center point of a first range on the first coordinate axis corresponding to the first joining surface.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: January 24, 2012
    Assignee: Ricoh Company, Ltd.
    Inventors: Nobuyuki Arai, Tomoya Ohsugi, Yoshinori Hayashi, Nobuaki Kubo
  • Patent number: 8075988
    Abstract: A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2). (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: December 13, 2011
    Assignee: Toray Industries, Inc.
    Inventors: Nobuyuki Arai, Norimitsu Natsume, Kenichi Yoshioka, Junko Kawasaki, Hiroshi Takezaki
  • Publication number: 20110291056
    Abstract: A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2). (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
    Type: Application
    Filed: August 2, 2011
    Publication date: December 1, 2011
    Inventors: Nobuyuki Arai, Norimitsu Natsume, Kenichi Yoshioka, Junko Kawasaki, Hiroshi Takezaki
  • Publication number: 20110287246
    Abstract: A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2). (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
    Type: Application
    Filed: August 2, 2011
    Publication date: November 24, 2011
    Inventors: Nobuyuki ARAI, Norimitsu Natsume, Kenichi Yoshioka, Junko Kawasaki, Hiroshi Takezaki
  • Patent number: 8022347
    Abstract: A surface-emitting laser array includes a plurality of surface-emitting laser devices arranged in an array. An optical system includes a plurality of optical devices to guide a light beam composed of lights emitted from the surface-emitting laser array to a target surface to be scanned. A light-intensity-control-device switching unit places one of light-intensity control devices having different light transmittances at a predetermined position in an optical path of the light beam.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: September 20, 2011
    Assignee: Ricoh Company, Ltd.
    Inventors: Hibiki Tatsuno, Kenichi Ono, Tomoaki Suga, Naoto Watanabe, Nobuyuki Arai
  • Publication number: 20110221857
    Abstract: An optical scanner includes a light source, a deflector and a scanning optical system. The scanning optical system includes a first optical system including at least one resin scanning lens, and a second optical system between the target surface and one resin scanning lens. The second optical system includes at least one of a folding mirror(s) and a glass sheet(s), wherein m1+g2=m2+g1 is satisfied wherein m1 and g1 are respectively number of the folding mirror(s) and number of the glass sheet(s) to which the first ray has a shorter optical path than the second ray does, m2 and g2 are respectively number of the folding mirror(s) and number of the glass sheet(s) to which the first ray has a longer optical path than the second ray does.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 15, 2011
    Inventors: Hibiki TATSUNO, Daisuke Ichii, Nobuyuki Arai
  • Publication number: 20110151235
    Abstract: A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2). (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
    Type: Application
    Filed: March 2, 2011
    Publication date: June 23, 2011
    Inventors: Nobuyuki ARAI, Norimitsu NATSUME, Kenichi YOSHIOKA, Junko KAWASAKI, Hiroshi TAKEZAKI
  • Publication number: 20110147674
    Abstract: A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2). (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
    Type: Application
    Filed: March 2, 2011
    Publication date: June 23, 2011
    Inventors: Nobuyuki ARAI, Norimitsu NATSUME, Kenichi YOSHIOKA, Junko KAWASAKI, Hiroshi TAKEZAKI
  • Publication number: 20110122217
    Abstract: An optical scanning system for a K station includes a resin scanning lens and three reflecting mirrors. Two reflectance ratios are calculated: one being the reflectance ratio of a luminous flux traveling toward the scanning start position of a drum-shaped photosensitive drum and the other being the reflectance ratio of a luminous flux traveling toward the scanning end position of the photosensitive drum. The magnitude relation between the two reflectance ratios is such that the reflecting mirror has an inverse magnitude relation to that of the other reflecting mirrors. Moreover, the difference is calculated between the largest value and the smallest value of the reflectance ratio, where the reflectance ratio depends on the angle of deviation of the polygon mirror. The reflecting mirror has the largest difference among the three reflecting mirrors.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 26, 2011
    Applicant: RICOH COMPANY, LTD.
    Inventors: Nobuyuki Arai, Hibiki Tatsuno
  • Patent number: 7931958
    Abstract: A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2). (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: April 26, 2011
    Assignee: Toray Industries, Inc.
    Inventors: Nobuyuki Arai, Norimitsu Natsume, Kenichi Yoshioka, Junko Kawasaki, Hiroshi Takezaki
  • Publication number: 20110052263
    Abstract: An optical scanner includes a light source including light emitters, an aperture member collimating light beams from the light source, a deflector deflecting the light beams passing through the aperture member, and a scanning optical system condensing the deflected light beams onto a scanned surface to optically scan the surface in a main-scanning direction. The scanning optical system includes a resin scanning system having at least one resin scanning lens. At least one folding mirror/sheet glass is disposed between a scanning lens nearest to the deflector in the resin scanning system and the scanned surface. At least one scanning lens in the resin scanning system has an uneven birefringence distribution with respect to a sub-scanning direction. An optical conjugate image of the aperture member is formed between a lens surface nearest to the deflector in the resin scanning system and a lens surface nearest to the scanned surface with respect to the sub-scanning direction.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 3, 2011
    Applicant: RICOH COMPANY, LTD.
    Inventors: Hibiki Tatsuno, Nobuyuki Arai
  • Publication number: 20110012982
    Abstract: An optical scanning device includes: a light source; an optical deflecting unit that deflects a light beam emitted from the light source to scan on a scanning surface in main-scanning direction; and a scanning optical system that includes a first scanning lens and a second scanning lens that converge the light beam that is deflected onto the scanning surface. Distance between an exit surface of the first scanning lens and an incident surface of the second scanning lens is shorter than distance between a deflection facet of the optical deflecting unit and an incident surface of the first scanning lens, an exit surface of the second scanning lens is nearer to the deflection facet than a midpoint between the deflection facet and the scanning surface, and an image-surface-side principal point of the scanning optical system in sub-scanning direction is nearer to the scanning surface than the midpoint.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 20, 2011
    Inventor: Nobuyuki Arai
  • Publication number: 20100178487
    Abstract: A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2). (1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000. (2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
    Type: Application
    Filed: August 7, 2007
    Publication date: July 15, 2010
    Inventors: Nobuyuki Arai, Norimitsu Natsume, Kenichi Yoshioka, Junko Kawasaki, Hiroshi Takezaki
  • Publication number: 20090314927
    Abstract: A surface-emitting laser array includes a plurality of surface-emitting laser devices arranged in an array. An optical system includes a plurality of optical devices to guide a light beam composed of lights emitted from the surface-emitting laser array to a target surface to be scanned. A light-intensity-control-device switching unit places one of light-intensity control devices having different light transmittances at a predetermined position in an optical path of the light beam.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 24, 2009
    Inventors: Hibiki Tatsuno, Kenichi Ono, Tomoaki Suga, Naoto Watanabe, Nobuyuki Arai
  • Patent number: 7626744
    Abstract: By setting elements within the range that predetermined conditions are satisfied, for example, so that a size of a rotating polygon mirror is minimized, the rotating polygon mirror is made compact while the eclipse of light beams in the main scanning direction is prevented. The cost reduction of an apparatus is thus realized. The compact rotating polygon mirror reduces the consumption energy and the amount of heat generated in its drive system. Deteriorations in various optical characteristics including an increase in spot diameter of the light beam by temperature variation, uneven scanning pitch, and sub-scanning direction variation in beam pitch are suppressed.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: December 1, 2009
    Assignee: Ricoh Company, Limited
    Inventors: Nobuyuki Arai, Yoshinori Hayashi, Daisuke Ichii
  • Publication number: 20090195636
    Abstract: A pre-deflector optical system includes an isolator arranged on an optical path of a light beam from a light source. The isolator has a first surface with different light transmittances depending on a polarization state of an incident light beam on a first side close to the light source and a second surface imparting an optical phase difference of a ΒΌ wavelength to the incident light beam on a second side. A deflector deflects the light beam passed through the pre-deflector optical system. A rotation mechanism rotates the isolator around its optical axis. A holding member holds the light source and the isolator in a predetermined positional relationship.
    Type: Application
    Filed: February 2, 2009
    Publication date: August 6, 2009
    Inventors: Nobuyuki Arai, Nobuaki Kubo
  • Publication number: 20090141316
    Abstract: A deflector deflects a light beam from a light source. A scanning optical system focuses the light beam deflected by the deflector. An image carrying member is located at a focal position of the light beam and includes a surface that is scanned in a main scanning direction with the light beam focused by the scanning optical system. One pixel of an image is formed by a plurality of light spots having different focal positions in at least a sub-scanning direction. At least one light spot from among the light spots is formed on the surface of the image carrying member at a scan timing different from those of rest of the light spots.
    Type: Application
    Filed: December 2, 2008
    Publication date: June 4, 2009
    Inventors: Nobuyuki Arai, Yoshinori Hayashi, Masako Yoshii