Patents by Inventor Nobuyuki Inaba

Nobuyuki Inaba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6607849
    Abstract: Magnetic recording medium includes at least two layers having different magnetic anisotropy constants formed on a substrate and the perpendicular magnetic anisotropy of the second magnetic film of those magnetic films, far from the substrate surface, made equal to or larger than that of the first magnetic film near to the substrate surface, thus improving the magnetic isolation.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: August 19, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Yoshiyuki Hirayama, Yukio Honda, Kazuetsu Yoshida, Kenya Ito
  • Publication number: 20030134154
    Abstract: An ultra-high density information recording media has an inorganic compound layer 12 on a substrate 11, and in the inorganic compound layer 12, an oxide of at least one kind selected from silicon oxide, aluminum oxide, titanium oxide, tantalum oxide, and zinc oxide exists in an amorphous state at a grain boundary of crystal grain of an oxide of at least one kind selected from cobalt oxide, iron oxide, and nickel oxide. The media has a magnetic layer 13 made of an artificial lattice multilayer obtained by alternately laminating a Co layer or an alloy layer consisting of Co as a main phase and a metal element layer of at least one kind selected from Pt and Pd onto the layer 12. Thus, a distribution of magnetic properties serving as a pinning site of the movement of a magnetic wall in case of recording information to the magnetic layer 13 is formed in the magnetic layer 13.
    Type: Application
    Filed: January 23, 2003
    Publication date: July 17, 2003
    Applicant: HITACHI, LTD.
    Inventors: Fumiyoshi Kirino, Nobuyuki Inaba, Hiroki Yamamoto, Takashi Naitou, Ken Takahashi, Eiji Koyama, Motoyasu Terao, Sumio Hosaka, Hiroki Kuramoto
  • Patent number: 6592976
    Abstract: Magnetic recording medium includes at least two layers having different magnetic anisotropy constants formed on a substrate and the perpendicular magnetic anisotropy of the second magnetic film of those magnetic films, far from the substrate surface, made equal to or larger than that of the first magnetic film near to the substrate surface, thus improving the magnetic isolation.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: July 15, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Yoshiyuki Hirayama, Yukio Honda, Kazuetsu Yoshida, Kenya Ito
  • Publication number: 20030118867
    Abstract: A magnetic recording medium 100 comprises, on a substrate 1, a first orientation control layer 2, a second orientation control layer 4, a soft magnetic layer 6, a non-magnetic layer 8, a recording layer 12, and a carbon protective layer 14. The recording layer 12 is formed of an FePt ordered alloy phase which exhibits ferromagnetism and an FePt3 ordered alloy phase which exhibits paramagnetism. Accordingly, the magnetic coupling force, which acts between those of the FePt ordered alloy phase, is broken by the paramagnetic FePt3 ordered alloy phase. The magnetic interaction between those of the FePt ordered alloy phase is reduced, and thus the noise is reduced. Further, the high density recording can be performed, and the medium is excellent in thermal stability, because the FePt ordered alloy having high crystalline magnetic anisotropy is used for the recording layer 12.
    Type: Application
    Filed: December 2, 2002
    Publication date: June 26, 2003
    Applicant: HITACHI MAXELL, LTD.
    Inventors: Tetsunori Koda, Nobuyuki Inaba, Hideaki Yamanaka, Enji Fujita, Satoshi Matsunuma
  • Patent number: 6572988
    Abstract: A magnetic recording medium has a magnetic recording film in which the magnitude of saturation magnetization Ms(T=5° K) at 5° K and magnitude of saturation magnetization Ms(T=300° K) at 300° K satisfy: Ms(T=300° K)/Ms(T=5° K)≧0.75. The recording medium enables the high-density recording, and a magnetic recording apparatus using this recording medium can yield a sufficiently high reproduction signal level within the operating temperature range of the apparatus.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: June 3, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Nobuyuki Inaba, Kazuetsu Yoshida, Kazusuke Yamanaka, Fumiyoshi Kirino, Masaaki Futamoto
  • Patent number: 6544672
    Abstract: Disclosed is a magnetic recording medium capable of reducing noise and an error rate of the medium. The medium comprises a nonmagnetic substrate; a magnetic layer formed on the surface of the nonmagnetic substrate directly or through a nonmagnetic underlayer; and a protective layer formed on the magnetic layer; wherein the magnetic recording medium satisfies the following relationships: −0.5≦{Hc(1)−Hc(p)}/Hc(1)≦0.3 Hc(1)≧2 kOe 20 G×&mgr;m≦Br(1)×t≦100 G×&mgr;m where Hc(1) indicates a corecivity of the magnetic layer measured in the longitudinal direction; Hc(p) indicates a coercivity of the magnetic layer measured in the perpendicular direction; Br(1) indicates a remanent magnetization of the magnetic layer measured in the longitudinal direction; and “t” indicates a layer thickness of the magnetic layer.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: April 8, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Tomoo Yamamoto, Masukazu Igarashi, Yuzuru Hosoe, Akira Ishikawa
  • Patent number: 6541125
    Abstract: A magnetic recording medium includes a substrate, an underlayer provided on the substrate, a Co alloy magnetic film formed through the underlayer, and a protective film for protecting the magnetic film, wherein the underlayer has a two-layer structure of an lower underlayer contacted with the substrate and an upper underlayer contacted with the Co alloy magnetic film, the upper underlayer is a Co—Crx—My alloy film having a hexagonal close-packed structure, where 25 atomic %≦x+y≦50 atomic %, 0.5 atomic %≦y, nonmagnetic element M is one selected from the group of elements B, Si, Ge, C, Al, P, Ti, V, Nb, Zr, Hf, Mn, Rh, Os, Ir, Re, Pd, Pt, Mo, Ta, W, Ag and Au. Thereby the medium can be increased in its coercive force and can be improved in its thermal stability characteristics.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: April 1, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Yoshiyuki Hirayama, Teruaki Takeuchi, Yukio Honda
  • Patent number: 6534164
    Abstract: Magnetic recording medium includes at least two layers having different magnetic anisotropy constants formed on a substrate and the perpendicular magnetic anisotropy of the second magnetic film of those magnetic films, far from the substrate surface, made equal to or larger than that of the first magnetic film near to the substrate surface, thus improving the magnetic isolation.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: March 18, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Yoshiyuki Hirayama, Yukio Honda, Kazuetsu Yoshida, Kenya Ito
  • Patent number: 6534206
    Abstract: A magneto-optical storage apparatus including an ultra-high density information recording media having an inorganic compound layer 12 on a substrate 11, and in the inorganic compound layer 12, an oxide of at least one kind selected from silicon oxide, aluminum oxide, titanium oxide, tantalum oxide, and zinc oxide exists in an amorphous state at a grain boundary of crystal grain of an oxide of at least one kind selected from cobalt oxide, iron oxide, and nickel oxide. The media has a magnetic layer 13 made of an artificial lattice multilayer obtained by alternately laminating a Co layer or an alloy layer consisting of Co as a main phase and a metal element layer of at least one kind selected from Pt and Pd onto the layer 12. Thus, a distribution of magnetic properties serving as a pinning site of the movement of a magnetic wall in case of recording information to the magnetic layer 13 is formed in the magnetic layer 13.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: March 18, 2003
    Assignees: Hitachi, Ltd., Hitachi Maxell, Ltd.
    Inventors: Fumiyoshi Kirino, Nobuyuki Inaba, Hiroki Yamamoto, Takashi Naitou, Ken Takahashi, Eiji Koyama, Motoyasu Terao, Sumio Hosaka, Hiroki Kuramoto
  • Patent number: 6525532
    Abstract: A magnetic sensor is constructed to be capable of detecting the change of tunnel current due to co-tunneling effect at a high S/N ratio by using a tunneling magneto-resistive element having a first magnetic layer of a soft magnetic material formed on a flat substrate, first and second tunnel barrier layers formed on the first magnetic layer, magnetic particles of a ferromagnetic material provided between the first and second tunnel barrier layers, and a second magnetic layer of a soft magnetic material formed on the second tunnel barrier layer so as to create tunneling junctions.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: February 25, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Toshihiko Sato, Ryoichi Nakatani, Nobuyuki Inaba
  • Publication number: 20030022025
    Abstract: Magnetic recording medium includes at least two layers having different magnetic anisotropy constants formed on a substrate and the perpendicular magnetic anisotropy of the second magnetic film of those magnetic films, far from the substrate surface, made equal to or larger than that of the first magnetic film near to the substrate surface, thus improving the magnetic isolation
    Type: Application
    Filed: July 26, 2002
    Publication date: January 30, 2003
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Yoshiyuki Hirayama, Yukio Honda, Kazuetsu Yoshida, Kenya Ito
  • Publication number: 20020197516
    Abstract: The magnetic recording medium includes an underlayer 12 formed of an inorganic compound layer, and a magnetic layer 13 formed over the underlayer 12. The inorganic compound layer as the underlayer 12 has crystal grains and at least one kind of oxide, the crystal grains having as main elements at least one of cobalt oxide, chromium oxide, iron oxide and nickel, the at least one kind of oxide lying as a non-crystalline phase in grain boundaries between the crystal grains and selected from among silicon oxide, aluminum oxide, titanium oxide, tantalum oxide and zinc oxide.
    Type: Application
    Filed: August 29, 2002
    Publication date: December 26, 2002
    Inventors: Fumiyoshi Kirino, Nobuyuki Inaba, Hiroki Yamamoto, Ken Takahashi, Takashi Naitou, Motoyasu Terao, Sumio Hosaka, Eiji Koyama, Hiroki Kuramoto
  • Publication number: 20020190713
    Abstract: A magnetic sensor is constructed to be capable of detecting the change of tunnel current due to co-tunneling effect at a high S/N ratio by using a tunneling magneto-resistive element having a first magnetic layer of a soft magnetic material formed on a flat substrate, first and second tunnel barrier layers formed on the first magnetic layer, magnetic particles of a ferromagnetic material provided between the first and second tunnel barrier layers, and a second magnetic layer of a soft magnetic material formed on the second tunnel barrier layer so as to create tunneling junctions.
    Type: Application
    Filed: August 29, 2002
    Publication date: December 19, 2002
    Inventors: Toshihiko Sato, Ryoichi Nakatani, Nobuyuki Inaba
  • Publication number: 20020172842
    Abstract: An amorphous magnetic recording medium comprising a substrate and an amorphous magnetic layer, where a magnetic domain formation-controlling layer comprising a main phase and 1 to 3 kinds of discrete spherical isolating phases arranged horizontally in lines in the main phase or 1 to 3 kinds of discrete spherical phases vertically stacked one upon another in the main phase is formed on the top side or the bottom side directly or through at least one of other layers to bring the amorphous magnetic layer into a finer magnetic domain structure, can satisfy high density recording.
    Type: Application
    Filed: March 1, 2002
    Publication date: November 21, 2002
    Inventors: Mitsutoshi Honda, Hiroki Yamamoto, Takashi Naito, Tatsumi Hirano, Tetsuo Nakazawa, Fumiyoshi Kirino, Teruaki Takeuchi, Akira Yano, Nobuyuki Inaba, Satoshi Matsunuma
  • Publication number: 20020160233
    Abstract: Magnetic recording medium includes at least two layers having different magnetic anisotropy constants formed on a substrate and the perpendicular magnetic anisotropy of the second magnetic film of those magnetic films, far from the substrate surface, made equal to or larger than that of the first magnetic film near to the substrate surface, thus improving the magnetic isolation
    Type: Application
    Filed: April 22, 2002
    Publication date: October 31, 2002
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Yoshiyuki Hirayama, Yukio Honda, Kazuetsu Yoshida, Kenya Ito
  • Patent number: 6472047
    Abstract: The magnetic recording medium includes an underlayer 12 formed of an inorganic compound layer, and a magnetic layer 13 formed over the underlayer 12. The inorganic compound layer as the underlayer 12 has crystal grains and at least one kind of oxide, the crystal grains having as main elements at least one of cobalt oxide, chromium oxide, iron oxide and nickel oxide, the at least one kind of oxide lying as a non-crystalline phase in grain boundaries between the crystal grains and selected from among silicon oxide, aluminum oxide, titanium oxide, tantalum oxide and zinc oxide.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: October 29, 2002
    Assignees: Hitachi, Ltd., Hitachi Maxell, Ltd.
    Inventors: Fumiyoshi Kirino, Nobuyuki Inaba, Hiroki Yamamoto, Ken Takahashi, Takashi Naitou, Motoyasu Terao, Sumio Hosaka, Eiji Koyama, Hiroki Kuramoto
  • Publication number: 20020146592
    Abstract: Disclosed is a magnetic recording medium capable of reducing noise and an error rate of the medium.
    Type: Application
    Filed: March 26, 2002
    Publication date: October 10, 2002
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Tomoo Yamamoto, Masukazu Igarashi, Yuzuru Hosoe, Akira Ishikawa
  • Patent number: 6447936
    Abstract: Magnetic recording medium includes at least two layers having different magnetic anisotropy constants formed on a substrate and the perpendicular magnetic anisotropy of the second magnetic film of those magnetic films, far from the substrate surface, made equal to or larger than that of the first magnetic film near to the substrate surface, thus improving the magnetic isolation of the first magnetic film near to the substrate surface.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: September 10, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Yoshiyuki Hirayama, Yukio Honda, Kazuetsu Yoshida, Kenya Ito
  • Publication number: 20020110707
    Abstract: A magnetic recording medium includes a non-magnetic substrate, an inorganic compound layer that is formed on the substrate and which contains a crystalline first oxide and an amorphous second oxide, and a magnetic layer that is formed on the inorganic compound layer. The crystalline first oxide comprises at least one oxide selected from cobalt oxide, chromium oxide, iron oxide and nickel oxide. The amorphous second oxide comprises at least one oxide selected from silicon oxide, aluminum oxide, titanium oxide, tantalum oxide and zinc oxide. The amorphous second oxide is present at a grain boundary of crystal grains of the first oxide.
    Type: Application
    Filed: April 12, 2002
    Publication date: August 15, 2002
    Inventors: Fumiyoshi Kirino, Nobuyuki Inaba, Ken Takahashi, Takashi Naitou, Sumio Hosaka, Eiji Koyama, Motoyasu Terao, Hiroki Yamamoto, Hiroki Kuramoto
  • Publication number: 20020080520
    Abstract: Magnetic recording medium includes at least two layers having different magnetic anisotropy constants formed on a substrate and the perpendicular magnetic anisotropy of the second magnetic film of those magnetic films, far from the substrate surface, made equal to or larger than that of the first magnetic film near to the substrate surface, thus improving the magnetic isolation
    Type: Application
    Filed: December 20, 2001
    Publication date: June 27, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Yoshiyuki Hirayama, Yukio Honda, Kazuetsu Yoshida, Kenya Ito