Patents by Inventor Norbert Asprion

Norbert Asprion has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10793494
    Abstract: A method for separating a mixture of materials A and B by extractive distillation, using an extraction medium having a higher affinity to B than to A, collecting a liquid fraction on a collecting tray and heated and partially evaporated in a first indirect heat exchanger, collecting the resultant vapor is released into the column and a non-evaporated proportion of the liquid fraction in the sump of the column, and a series of heating, separation and cooling where partially cooled extraction medium fraction is used as heating medium for a heat exchanger.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: October 6, 2020
    Assignee: BASF SE
    Inventor: Norbert Asprion
  • Patent number: 10569192
    Abstract: A distillation device comprising a column for separating a feed stream into a head product stream, a bottom product stream and optionally one or more side extraction streams, having three or more cells in 5 series through which fluid flows, wherein at least the first cell is integrated into the bottom of the column, for multi-stage heating and partial evaporation of the liquid flowing through the cells with the exception of the liquid from the last cell in an evaporation stage.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: February 25, 2020
    Assignee: BASF SE
    Inventors: Norbert Asprion, Bernd Heida, Jan-Oliver Weidert, Ortmund Lang
  • Publication number: 20190031581
    Abstract: A method for separating a mixture of materials A and B by extractive distillation, using an extraction medium having a higher affinity to B than to A, wherein a feed stream comprising A and B is conducted towards the extraction medium in a column, wherein an overhead fraction comprising A and also a liquid fraction comprising B and extraction medium are obtained, the liquid fraction is collected on a collecting tray and heated and partially evaporated in a first indirect heat exchanger, the resultant vapor is released into the column and a non-evaporated proportion of the liquid fraction is collected as sump fraction in the sump of the column, the sump fraction is successively heated in a second indirect heat exchanger and a third indirect heat exchanger and in part evaporated, wherein the resultant vapor is at least in part released into the column, the sump fraction is separated in a stripper into a fraction comprising B and an extraction medium fraction, the extraction medium fraction is used as heating me
    Type: Application
    Filed: February 2, 2017
    Publication date: January 31, 2019
    Applicant: BASF SE
    Inventor: Norbert ASPRION
  • Publication number: 20180361270
    Abstract: A distillation device comprising a column for separating a feed stream into a head product stream, a bottom product stream and optionally one or more side extraction streams, having three or more cells in 5 series through which fluid flows, wherein at least the first cell is integrated into the bottom of the column, for multi-stage heating and partial evaporation of the liquid flowing through the cells with the exception of the liquid from the last cell in an evaporation stage.
    Type: Application
    Filed: June 29, 2016
    Publication date: December 20, 2018
    Applicant: BASF SE
    Inventors: Norbert ASPRION, Bernd HEIDA, Jan-Oliver WEIDERT, Ortmund LANG
  • Patent number: 9611191
    Abstract: A reactor for gas-phase dehydrogenation of a hydrocarbon-comprising stream with an oxygen-comprising stream over a monolithic heterogeneous catalyst. Catalytically active zone(s) comprising monoliths packed next to one another and/or above one another and a mixing zone having fixed internals upstream of each catalytically active zone. Feed line(s) for the hydrocarbon-comprising gas stream to be dehydrogenated at the lower end of the reactor. Independently regulable feed line(s), which supply distributor(s), for the oxygen-comprising gas stream into each of the mixing zones and discharge line(s) for the reaction gas mixture of the autothermal gas-phase dehydrogenation at the upper end of the reactor. The interior wall of the reactor is provided with insulation. The catalytically active zone(s) is accessible from the outside of the reactor via manhole(s).
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: April 4, 2017
    Assignee: BASF SE
    Inventors: Gerhard Olbert, Carlos Tellaeche Herranz, Norbert Asprion, Alexander Weck, Ellen Dahlhoff
  • Patent number: 9498748
    Abstract: A process for removing acid gases from a hydrocarbonaceous fluid stream or an oxygen-comprising fluid stream in which the fluid stream is contacted with an aqueous solution which is essentially free from inorganic basic salts and comprises (i) at least one amine and (ii) at least one metal salt of an aminocarboxylic acid and/or an aminosulfonic acid. Conjoint use of the aminocarboxylic and/or aminosulfonic salt reduces the coabsorption of hydrocarbons or oxygen without significantly impairing the absorption rate at which acid gases are absorbed, without significantly reducing the absorption capacity of the solution for acid gases, and without significantly increasing the energy demand required for regeneration.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 22, 2016
    Assignee: BASF SE
    Inventors: Rupert Wagner, Ute Lichtfers, Norbert Asprion
  • Patent number: 9278306
    Abstract: A method for bringing into contact two phases which are not completely miscible with one another, and whose contact is accompanied by heat development owing to mass transfer and/or chemical reaction, in which a first phase is introduced into the lower region of a contactor and a second phase is introduced into the upper region of the contactor and passed in countercurrent flow to the first phase in the contactor, a treated first phase and an exhausted second phase being obtained, which comprises recirculating a part of the exhausted second phase to the contactor at least one point situated between the upper region and the lower region. In the preferred embodiment, the first phase is a fluid stream comprising acid gases such as CO2, H2S, SO2, CS2, HCN, COS or mercaptans, and the second phase is an absorption medium which comprises an aqueous solution of at least one organic and/or inorganic base.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: March 8, 2016
    Assignee: BASF SE
    Inventors: Mauricio Grobys, Norbert Asprion
  • Publication number: 20150329477
    Abstract: What is proposed is a continuous process for discharging a solid, salt-containing phase comprising alkali metal acetates and/or alkaline earth metal acetates from the product mixture from the preparation of N,N-dimethylacetamide (DMAC) by reaction of methyl acetate (MeOAc) with dimethylamine (DMA) in the presence of a catalyst comprising N,N-dimethylacetamide (DMAC), methyl acetate (MeOAc), dimethylamine (DMA) and a catalyst, having the following process steps: level-regulated feeding of the product mixture as feed stream into an evaporation vessel of a forced circulation evaporator, flash evaporation of volatile components of the product mixture in the forced circulation evaporator to form a vapor phase comprising N,N-dimethylacetamide (DMAC) and precipitation of a solid, salt-containing phase comprising alkali metal acetates and/or alkaline earth metal acetates, recycling of the volatile components of the product mixture obtained after the flash evaporation, removal of a vapor phase comprising N,N-dimethyl
    Type: Application
    Filed: December 18, 2013
    Publication date: November 19, 2015
    Applicant: BASF SE
    Inventors: Ortmund LANG, Norbert ASPRION, Axel BINDER, Bernd METZEN, Christof Wilhelm WIGBERS, Petr KUBANEK, Thomas STEINHILBER
  • Patent number: 8766009
    Abstract: A process for preparing ethylamines and monoisopropylamine (MIPA), in which bioethanol is reacted with ammonia in the presence of hydrogen and of a heterogeneous catalyst to give ethylamines, said bioethanol having a content of sulfur and/or sulfur compounds of ?0.1 ppm by weight (calculated S), and then isopropanol is reacted with ammonia in the presence of the same catalyst and in the presence of hydrogen to give MIPA.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: July 1, 2014
    Assignee: BASF SE
    Inventors: Norbert Asprion, Manfred Julius, Oliver Bey, Stefanie Werland, Frank Stein, Matthias Kummer, Wolfgang Mägerlein, Johann-Peter Melder, Kevin Huyghe, Maarten Moors
  • Publication number: 20140171709
    Abstract: A reactor for gas-phase dehydrogenation of a hydrocarbon-comprising stream with an oxygen-comprising stream over a monolithic heterogeneous catalyst. Catalytically active zone(s) comprising monoliths packed next to one another and/or above one another and a mixing zone having fixed internals upstream of each catalytically active zone. Feed line(s) for the hydrocarbon-comprising gas stream to be dehydrogenated at the lower end of the reactor. Independently regulable feed line(s), which supply distributor(s), for the oxygen-comprising gas stream into each of the mixing zones and discharge line(s) for the reaction gas mixture of the autothermal gas-phase dehydrogenation at the upper end of the reactor. The interior wall of the reactor is provided with insulation. The catalytically active zone(s) is accessible from the outside of the reactor via manhole(s).
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: BASF SE
    Inventors: Gerhard Olbert, Carlos Tellaeche Herranz, Norbert Asprion, Alexander Weck, Ellen Dahlhoff
  • Patent number: 8476475
    Abstract: A premix is described for producing an absorption medium for removing acid gases from fluid streams. The premix comprises at least one alkanolamine, piperazine and water, the premix having a total amine content of more than 65% by weight, the molar ratio of water to piperazine in the premix being 1.6 to 4.8. The premix is characterized by a low solidification point. It is diluted with water and/or alkanolamine to give the ready-to-use absorption medium.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: July 2, 2013
    Assignee: BASF SE
    Inventor: Norbert Asprion
  • Patent number: 8398749
    Abstract: A process for the recovery of carbon dioxide, which includes: (a) an absorption step of bringing a carbon dioxide-containing gaseous feed stream into gas-liquid contact with an absorbing fluid, whereby at least a portion of the carbon dioxide present in the gaseous stream is absorbed into the absorbing fluid to produce (i) a refined gaseous stream having a reduced carbon dioxide content and (ii) an carbon dioxide-rich absorbing fluid; and (b) a regeneration step of treating the carbon dioxide-rich absorbing fluid at a pressure of greater than 3 bar (absolute pressure) so as to liberate carbon dioxide and regenerate a carbon dioxide-lean absorbing fluid which is recycled for use in the absorption step, in which the absorbing fluid is an aqueous amine solution containing a tertiary aliphatic alkanol amine and an effective amount of a carbon dioxide absorption promoter, the tertiary aliphatic alkanol amine showing little decomposition under specified conditions of temperature and pressure under co-existence with
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: March 19, 2013
    Assignee: BASF SE
    Inventors: Ute Lichtfers, Norbert Asprion, Mark Claessen, Hiroshi Umino, Koji Tanaka
  • Patent number: 8388738
    Abstract: A process for removing carbon dioxide from a fluid flow, wherein a) the fluid flow is brought into contact with an absorption agent which contains a solution of ammonia and at least one amino carboxylic acid and/or amino sulfonic acid, a charged absorption agent being obtained, and b) the charged absorption agent is regenerated while releasing carbon dioxide. The additional use of the amino carboxylic acid and/or amino sulfonic acid increases the circulation absorption capacity of the absorption agent.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 5, 2013
    Assignee: BASF SE
    Inventors: Norbert Asprion, Georg Sieder, Ute Lichtfers, Hugo Rafael Garcia Andarcia
  • Publication number: 20120271029
    Abstract: The present invention relates to a process for preparing hydroxypivalaldehyde (HPA), which comprises in a first stage reacting isobutyraldehyde with formaldehyde in the presence of a tertiary amine and in a second stage introducing the reaction output obtained from the first stage into a stripping column. The present application further relates to a process for preparing neopentyl glycol (NPG) by hydrogenating the hydroxypivalaldehyde prepared in accordance with the invention and the further conversion of the NPG thus obtained to polyester resins, unsaturated polyester resins, lubricants or plasticizers.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 25, 2012
    Applicant: BASF SE
    Inventors: Helmut Kronemayer, Michael Steiniger, Eva Kretzschmar, Norbert Asprion, Marcus Bechtel
  • Publication number: 20120051989
    Abstract: A process for removing acid gases from a hydrocarbonaceous fluid stream or an oxygen-comprising fluid stream in which the fluid stream is contacted with an aqueous solution which is essentially free from inorganic basic salts and comprises (i) at least one amine and (ii) at least one metal salt of an aminocarboxylic acid and/or an aminosulfonic acid. Conjoint use of the aminocarboxylic and/or aminosulfonic salt reduces the coabsorption of hydrocarbons or oxygen without significantly impairing the absorption rate at which acid gases are absorbed; without significantly reducing the absorption capacity of the solution for acid gases, and without significantly increasing the energy demand required for regeneration.
    Type: Application
    Filed: May 15, 2007
    Publication date: March 1, 2012
    Applicant: BASF SE
    Inventors: Rupert Wagner, Ute Lichtfers, Norbert Asprion
  • Patent number: 8075673
    Abstract: A description is given of an absorption medium for removing carbon dioxide from gas streams which comprises aqueous solution of an amine of the formula I HNR2??(I) where one or both radicals R are and the other radical R is hydrogen. The absorption medium is distinguished by particular oxidation resistance.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: December 13, 2011
    Assignee: BASF SE
    Inventors: Joachim-Thierry Anders, Johann-Peter Melder, Norbert Asprion, Ole Brettschneider, Iven Clausen, Bernd Eck, Ute Lichtfers
  • Patent number: 8034166
    Abstract: A description is given of an absorption medium for removing carbon dioxide from a gas stream, which comprises an aqueous solution of at least one amine and at least one aminocarboxylic acid and/or aminosulfonic acid. The concomitant use of an aminocarboxylic acid or aminosulfonic acid reduces the energy required for regeneration of the absorption medium.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: October 11, 2011
    Assignee: BASF SE
    Inventors: Norbert Asprion, Iven Clausen, Ute Lichtfers, Rupert Wagner
  • Patent number: 7887620
    Abstract: A description is given of a process for removing carbon dioxide from gas streams in which the partial pressure of the carbon dioxide is less than 200 mbar, in particular flue gases, the gas stream being contacted with a liquid absorption medium which comprises an aqueous solution (A) of a tertiary aliphatic alkanolamine and (B) an activator of the formula R1—NH—R2—NH2, where R1 is C1-C6-alkyl and R2 is C2-C6-alkylene, the sum of the concentrations of A and B being 2.5 to 7 mol/l, and the molar ratio of B to A being in the range of 1:3 to 1.5:1. The activator is, for example, 3-methylaminopropylamine, the tertiary aliphatic amine methyldiethanolamine, methyldiisopropanolamine or n-butyldiethanolamine. The process permits substantial removal of carbon dioxide and the regeneration of the absorption medium is possible with relatively low energy consumption.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: February 15, 2011
    Assignee: BASF SE
    Inventors: Norbert Asprion, Iven Clausen, Ute Lichtfers
  • Publication number: 20100236408
    Abstract: A process for removing carbon dioxide from a fluid flow, wherein a) the fluid flow is brought into contact with an absorption agent which contains a solution of ammonia and at least one amino carboxylic acid and/or amino sulfonic acid, a charged absorption agent being obtained, and b) the charged absorption agent is regenerated while releasing carbon dioxide. The additional use of the amino carboxylic acid and/or amino sulfonic acid increases the circulation absorption capacity of the absorption agent.
    Type: Application
    Filed: November 14, 2008
    Publication date: September 23, 2010
    Applicant: BASF SE
    Inventors: Norbert Asprion, George Sider, Ute Lichtfers, Hugo Rafael Garcia Andarcia
  • Publication number: 20100204042
    Abstract: A premix is described for producing an absorption medium for removing acid gases from fluid streams. The premix comprises at least one alkanolamine, piperazine and water, the premix having a total amine content of more than 65% by weight, the molar ratio of water to piperazine in the premix being 1.6 to 4.8. The premix is characterized by a low solidification point. It is diluted with water and/or alkanolamine to give the ready-to-use absorption medium.
    Type: Application
    Filed: May 18, 2007
    Publication date: August 12, 2010
    Applicant: BASF SE
    Inventor: Norbert Asprion