Patents by Inventor Norbert Baron

Norbert Baron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240148745
    Abstract: The present invention provides compounds able to induce neuroprotection of damaged neurons and boost the remyelination potential of oligodendrocytes. The compounds have been identified through methods of pharmacological screening of a small molecule library consisting of known pharmacologically active compounds and approved drugs. The screening method is also included in the invention.
    Type: Application
    Filed: March 9, 2022
    Publication date: May 9, 2024
    Applicants: FONDAZIONE CENTRO SAN RAFFAELE, INSTITUT DU CERVEAU ET DE LA MOELLE ÉPINIÈRE, ASSISTANCE PUBLIQUE HOPITAUX DE PARIS, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICALE, SORBONNE UNIVERSITE, WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, HEINRICH HEINE UNIVERSITY DÜSSELDORF, UNIVERSITÄTSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITÄT MAINZ, THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING / MCGILL UNIVERSITY, ISTITUTO SUPERIORE DI SANITÀ, CONSIGLIO NAZIONALE DELLE RICERCHE, IRBM S.P.A.
    Inventors: Gianvito MARTINO, Paola PANINA, Brahim NAIT-OUMESMAR, Anne BARON-VAN EVERCOOREN, Tanja KUHLMANN, Sergio BARANZINI, Norbert GOEBELS, Frauke ZIPP, Nicholas HANUSCHECK, Jack ANTEL, Cristina AGRESTI, Maria Pia ABBRACCHIO, Ivano EBERINI, Chiara PARRAVICINI, Stefania OLLA, Alberto BRESCIANI
  • Patent number: 9669245
    Abstract: Systems and methods for reducing an overpressure caused by an explosion of a vapor cloud are provided. In one or more embodiments, the system can include one or more sensors operable to detect the explosion of the vapor cloud. The system can also include one or more igniters operable to ignite the vapor cloud at locations throughout, after the explosion of the vapor cloud is detected, to provide a discrete combustion zone at each location. Each combustion zone can form a discrete pressure wave, thereby reducing the overpressure caused by the explosion of the vapor cloud.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: June 6, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Norbert Baron
  • Publication number: 20150335925
    Abstract: Systems and methods for reducing an overpressure caused by an explosion of a vapor cloud are provided. In one or more embodiments, the system can include one or more sensors operable to detect the explosion of the vapor cloud. The system can also include one or more igniters operable to ignite the vapor cloud at locations throughout, after the explosion of the vapor cloud is detected, to provide a discrete combustion zone at each location. Each combustion zone can form a discrete pressure wave, thereby reducing the overpressure caused by the explosion of the vapor cloud.
    Type: Application
    Filed: April 9, 2013
    Publication date: November 26, 2015
    Applicant: ExxonMobil Research And Engineering Company
    Inventor: Norbert BARON
  • Patent number: 6300451
    Abstract: Copolymers, and processes to make them, are provided which are derived from monomers comprising: a) one mono-olefin having a single Ziegler-Natta polymerizable bond; b) a second monomer having at least one Ziegler-Natta polymerizable bond; c) a third monomer having at least two Ziegler-Natta polymerizable bonds such monomer being: i) straight-chained and of less than six or at least seven carbon atoms; ii) other than straight chained; or iii) combinations thereof, such copolymer having: c) at least about one carbon-carbon unsaturated bond per number average molecule; d) viscous energy of activation (Ea) at least 1 kcal/mol greater than a copolymer having a linear backbone derived from same monomers, but excluding species having at least two Ziegler-Natta polymerizable bonds; e) crystallinity level of about 10% to about 50%; and f) Mz/Mw at least about 1.7. Such copolymers show enhanced melt processability and other attributes during end-product fabrication.
    Type: Grant
    Filed: October 24, 1994
    Date of Patent: October 9, 2001
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Aspy Keki Mehta, Charles Stan Speed, Jo Ann Marie Canich, Norbert Baron, Bernard Jean Folie, Makoto Sugawara, Akihira Watanabe, Howard Curtis Welborn, Jr.
  • Patent number: 6255410
    Abstract: The invention relates to processes for producing polyolefins at pressures substantially below conventional high pressure conditions in two-phase conditions below the cloud point. The invention can involve a continuous system with optional recycle.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: July 3, 2001
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Hayashi Shigekauzu, Makoto Sugawara, Norbert Baron, Charles Stanley Speed, Jo Ann Marie Canich, Howard Curtis Welborn, Jr.
  • Patent number: 5648438
    Abstract: The invention provides a continuous process for catalytically polymerizing a monomer feed of ethylene and at least one comonomer which comprises introducing a catalyst including a bulky ancillary ligand transition metal compound and monomer feed in an upstream reaction zone for polymerization, introducing further catalyst in a downstream reaction zone for further polymerization, the peak temperature in the downstream reaction zone being at least 50.degree. C. higher than in the upstream zone and being above 150.degree. C. The process economically produces polymer of good properties which is melt processable.
    Type: Grant
    Filed: April 1, 1994
    Date of Patent: July 15, 1997
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: David T. Henry, Doulgas J. McLain, Joseph D. Domine, Aspy Keki Mehta, William Joseph Zafian, Norbert Baron, Bernard J. Folie
  • Patent number: 5432242
    Abstract: A process for preparing olefinic polymers by metallocene catalyzed olefin polymerisation in which at least one volatile catalyst kill agent is introduced. A non-volatile catalyst kill agent may also be used in conjunction with the volatile catalyst kill agent. Water may be used as the volatile agent and compounds containing a terminal hydroxy group, oxygen, nitrogen or sulfur may constitute the non-volatile agent. Purified monomer is recycled to the reactor.
    Type: Grant
    Filed: August 23, 1993
    Date of Patent: July 11, 1995
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Norbert Baron