Patents by Inventor Norbert Kaula

Norbert Kaula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10141076
    Abstract: The present disclosure involves a medical system that includes one or more implantable medical devices configured to deliver a medical therapy to a patient. The medical system also includes a portable electronic device on which a touch-sensitive user interface is implemented. The user interface is configured to provide a visual representation of the medical therapy through a hierarchy. The hierarchy includes a lower level representation of the medical therapy that corresponds to a stimulation program that includes a plurality of configurable stimulation parameters. The hierarchy includes a middle level representation of the medical therapy that corresponds to a stimulation program-set that includes a plurality of different stimulation programs. The hierarchy includes an upper level representation of the medical therapy that corresponds to a scrollable collection of stimulation program-sets that are represented by a plurality of digital cards, respectively.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: November 27, 2018
    Assignee: Nuvectra Corporation
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Publication number: 20180326220
    Abstract: A pulse generator includes charging circuitry configured to provide electrical power to the pulse generator. The pulse generator includes communication circuitry configured to conduct wireless telecommunications with external programming devices. The telecommunications contain programming instructions sent from the external programming devices. The pulse generator includes stimulation circuitry configured to generate electrical pulses based on the programming instructions. The electrical pulses include a first component that is paresthesia-inducing and a second component that is non-paresthesia-inducing.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Inventors: Norbert Kaula, Yohannes Iyassu, Scott Brainard
  • Patent number: 10124171
    Abstract: Via a user interface of an electronic device, virtual representations of an implantable pulse generator (IPG), an external pulse generator (EPG), and an implantable lead are displayed. A detection is made that the EPG has been selected. In response to the selection of the EPG, a first workflow is made automatically available. The first workflow is associated with using a Percutaneous Nerve Evaluation (PNE) needle to investigate an optimum location for implanting the implantable lead. A detection is made that the implantable lead has been coupled to the IPG or the EPG. In response to the coupling of the implantable lead to the IPG or the EPG, a second workflow is made automatically available. The second workflow is associated with evaluating a patient physiological response at least in part by using the implantable lead to deliver electrical stimulation to the patient.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: November 13, 2018
    Assignee: Nuvectra Corporation
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Patent number: 10118037
    Abstract: Feedback regarding electrical stimulation is provided to a patient. Electrical stimulation is applied to the patient. The electrical stimulation is applied by varying an electrical stimulation parameter. A signal is communicated to the patient via an electronic device. The signal is correlated with the electrical stimulation parameter such that the signal varies in association with the varying of the electrical stimulation parameter. The communicating is performed while the electrical stimulation is applied. Feedback is received from the patient in response to the electrical stimulation. Based on the received feedback from the patient, the electrical stimulation is adjusted.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: November 6, 2018
    Assignee: Nuvectra Corporation
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Patent number: 10083261
    Abstract: An electronic device having a display is provided. Interactive user engagements with the electronic device are made through the display. A simulation mode is entered. The simulation mode simulates a real pulse generator configured to generate electrical stimulation pulses. The simulation mode is entered without establishing a wireless connection with the real pulse generator. Via the display, one or more features of a virtual pulse generator are demoed after entering the simulation mode. The one or more features of the virtual pulse generator simulate corresponding features of the real pulse generator. The virtual pulse generator is a software program that resides on the electronic device. The demoing comprises mimicking a plurality of user interface screens that allow a user to interact with the real pulse generator.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: September 25, 2018
    Assignee: Nuvectra Corporation
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Patent number: 10080897
    Abstract: A pulse generator is configured to generate electrical pulses of an electrical stimulation therapy. The pulse generator includes an N number of output channels and a microcontroller configured to generate instructions. The pulse generator is configured to generate different stimulation waveforms simultaneously for the output channels. The different waveforms have different waveform characteristics. A mesh electrode array includes an M number of electrodes. Each of the electrodes is configured to deliver the electrical pulses of the electrical stimulation therapy. M is at least several times greater than N. A solid state relay contains a plurality of controllable switches that is each configured to be turned on or off in response to the instructions received from the microcontroller, such that the solid state relay routes the output channels of the pulse generator to different subset of the electrodes of the mesh electrode array at different points in time.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: September 25, 2018
    Assignee: NUVECTRA CORPORATION
    Inventors: Norbert Kaula, Yohannes Iyassu, Michael Labbe
  • Patent number: 10076667
    Abstract: A non-zero starting value for ramping up a stimulation parameter for an electrical stimulation to be delivered to a patient is determined. The non-zero starting value is customized to the patient. A pulse generator is caused to generate the electrical stimulation, which is delivered to the patient via an implanted lead. The pulse generator is caused to ramp up, from the determined non-zero starting value and toward a predefined maximum limit value, the stimulation parameter for a plurality of electrode contacts on the lead. Feedback is received from the patient in response to the ramping up. The feedback is received via an electronic patient feedback device. Based on the ramping up and the received feedback from the patient, a perception threshold is determined for each of the plurality of electrode contacts. The perception threshold is a value of the stimulation parameter that corresponds to the patient feeling the electrical stimulation.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: September 18, 2018
    Assignee: Nuvectra Corporation
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Patent number: 10052490
    Abstract: The present disclosure involves systems and methods of programming electrical stimulation therapy for a patient. A communications link is established with a pulse generator that is configured to generate electrical stimulation pulses. An intermittent electrical coupling between the pulse generator and a diagnostic tool is simulated. This simulation is performed by instructing, for a plurality of cycles, the pulse generator to automatically turn on and off the generation of electrical stimulation pulses. Each cycle includes a first time period and a second time period following the first time period. The simulating includes: instructing the pulse generator to generate the electrical stimulation pulses during the first time period; and instructing the pulse generator to stop generating the electrical stimulation pulses during the second time period.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: August 21, 2018
    Assignee: Nuvectra Corporation
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Publication number: 20180229042
    Abstract: An electronic programmer is used to program a pulse generator to generate electrical stimulation to be delivered to a patient via an implantable lead. The electronic programmer simultaneously displays, via an user interface, a first control mechanism and a second control mechanism that is separate and different from the first control mechanism. A first user input is received via the first control mechanism, and a second user input is received via the second control mechanism. In response to the received first user input and the second user input, the electronic programmer sends instructions to the pulse generator to cause a migration of the electrical stimulation from a first set of electrodes on the implantable lead to a second set of electrodes on the implantable lead. The first user input defines a stimulation amplitude change for the migration, and the second user input defines a direction for the migration.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Inventors: Norbert Kaula, Paul Landers, Yohannes Iyassu
  • Publication number: 20180126168
    Abstract: An electrical stimulation is applied to a patient via a lead by increasing a stimulation parameter over time. An anal sphincter response, a bellows response, and a toes response from the patient are detected as a result of the electrical stimulation. A first value of the stimulation parameter associated with the anal sphincter response, a second value of the stimulation parameter associated with the bellows response, and a third value of the stimulation parameter associated with the toes response are determined. A placement of the lead inside the patient is evaluated based on: a chronological occurrence of the anal sphincter response, the bellows response, and the toes response; a comparison of the first value with a predetermined threshold; a deviation of the second value from the first value; a deviation of the third value from the first value; or a deviation of the third value from the second value.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Patent number: 9943691
    Abstract: A stimulation system, such as a spinal cord stimulation (SCS) system, having a programmer for establishing a program to treat a patient. The programmer uses a discretized, interrupted, and safe spatial electrode migration process for establishing the stimulation program.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: April 17, 2018
    Assignee: Nuvectra Corporation
    Inventors: Norbert Kaula, Paul Landers, Yohannes Iyassu
  • Patent number: 9931511
    Abstract: A method of visualizing a sensation experienced by a patient is disclosed. A graphical user interface is provided. The graphical user interface is configured to receive an input from a user and display a visual output to the user. A virtual control mechanism is displayed on the graphical user interface. One or more engagements of the virtual control mechanism are detected through the graphical user interface. In response to the engagement of the virtual control mechanism, a sensation map history is displayed on the graphical user interface. The sensation map history graphically depicts a migration of a sensation map over time on a virtual human body model.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: April 3, 2018
    Assignee: NUVECTRA CORPORATION
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Patent number: 9901740
    Abstract: In a method for programming an implantable device, an input is received at a user interface on a tablet-style clinician programmer. A first display signal is generated on the clinician programmer that updates content on a first display based on the received user input. The first display has a first size. A second display signal is generated for transmission to a secondary unit having a second display separate from the clinician programmer. The second display has a second size larger than the first size. The generating of the second display signal includes enhancing the content of the second display signal to provide a clear image on the second size display. The second display signal is transmitted from the clinician programmer to the second display.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: February 27, 2018
    Assignee: NUVECTRA CORPORATION
    Inventors: Scott Drees, Norbert Kaula, Yohannes Iyassu, Scott G. Leyh, Richard J. Polefko, Stephen C. Trier, Raymond L. Yoder
  • Patent number: 9895532
    Abstract: A medical system includes an implantable lead having a plurality of electrode contacts, a pulse generator coupled to the lead and configured to generate electrical pulses to be delivered to a patient through the plurality of electrode contacts, and an electronic programmer coupled to the pulse generator. The electronic programmer programs the pulse generator to generate the electrical pulses. The pulse generator is programmed to generate an electrical stimulation to be applied to the patient via one of the electrode contacts on the implantable lead. A determination is received as to whether the patient, in response to the electrical stimulation, exhibited a bellows response or a toes response. A stimulation parameter of the electrical stimulation is ramped up in response to a determination that the patient did not exhibit the bellows response or the toes response and that the patient did not feel pain in response to the electrical stimulation.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: February 20, 2018
    Assignee: NUVECTRA CORPORATION
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Patent number: 9872988
    Abstract: A pulse generator is programmed to generate electrical stimulation to target a sacral nerve or a pudendal nerve of the patient. The electrical stimulation being delivered at least in part via a lead. The electrical stimulation is applied by ramping up a stimulation parameter over time. A first, a second, and a third physiological response are detected from the patient as a result of the electrical stimulation. A first value, a second value, and a third value of the stimulation parameter associated with the first, second, and third physiological response are measured, respectively. A placement of the lead inside the patient is evaluated based on at least one of: a chronological sequence in which the first, second, and third physiological responses occurred, a comparison of the first value with a predetermined threshold, or respective deviations of the second value or the third value from the first value.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: January 23, 2018
    Assignee: NUVECTRA CORPORATION
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Publication number: 20180008834
    Abstract: A method of evaluating an implantation of a lead is disclosed. Via a graphical user interface of an electronic device, a visual representation of a sacrum of the patient and a lead that is implanted in the sacrum is displayed. The lead includes a plurality of electrode contacts. An evaluation is made as to how well the lead has been implanted in the sacrum based on the visual representation of the sacrum and the lead. The evaluating comprises: determining whether the lead is inserted in a predetermined region of the sacrum, determining how far a predetermined one of the electrode contacts is located from an edge of the sacrum, and determining a degree of curvature of the lead.
    Type: Application
    Filed: August 28, 2017
    Publication date: January 11, 2018
    Inventors: Norbert Kaula, Yohannes Iyassu, Steven Siegel
  • Patent number: 9827424
    Abstract: A computer-assisted stimulation programming of an implantable medical device is performed. A perception threshold is determined for a plurality of contacts on a lead configured to be implanted inside a patient. The perception threshold is determined by automatically performing a first sweep of the plurality of contacts and automatically performing a second sweep of a stimulation parameter. A paresthesia coverage provided by the plurality of contacts is determined by automatically performing a third sweep of the plurality of contacts and automatically performing a fourth sweep of the stimulation parameter. The fourth sweep is performed based on the determined perception thresholds. The first sweep, the second sweep, the third sweep, and the fourth sweep are performed without needing a manual input from a human user. A subset of the contacts corresponding to the paresthesia coverage is selected. In response to user input, stimulation programming is performed using the subset of contacts.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: November 28, 2017
    Assignee: NUVECTRA CORPORATION
    Inventors: Norbert Kaula, Yohannes Iyassu
  • Patent number: 9776007
    Abstract: A model of an implantable lead is provided via a graphical user interface. The implantable lead is configured to deliver electrical stimulation to a patient via a plurality of electrodes located on the implantable lead. The graphical user interface also provides a plurality of predefined electrode activation patterns that include a coarse pattern and a refined pattern. The coarse pattern corresponds to a first group of electrodes located in a first region of the implantable lead. The refined pattern corresponds to a second group of electrodes located in a second region of the implantable lead. The second region is smaller than, and is a subsection of, the first region. A coarse testing process is performed by selectively activating the first group of electrodes belonging to the coarse pattern. Thereafter, a refined testing process is performed by selectively activating the second group of electrodes belonging to the refined pattern.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: October 3, 2017
    Assignee: NUVECTRA CORPORATION
    Inventors: Norbert Kaula, Scott Drees, Yohannes Iyassu, Seth Kaufman
  • Publication number: 20170266437
    Abstract: A pulse generator is configured to generate electrical pulses of an electrical stimulation therapy. The pulse generator includes an N number of output channels and a microcontroller configured to generate instructions. The pulse generator is configured to generate different stimulation waveforms simultaneously for the output channels. The different waveforms have different waveform characteristics. A mesh electrode array includes an M number of electrodes. Each of the electrodes is configured to deliver the electrical pulses of the electrical stimulation therapy. M is at least several times greater than N. A solid state relay contains a plurality of controllable switches that is each configured to be turned on or off in response to the instructions received from the microcontroller, such that the solid state relay routes the output channels of the pulse generator to different subset of the electrodes of the mesh electrode array at different points in time.
    Type: Application
    Filed: June 1, 2017
    Publication date: September 21, 2017
    Inventors: Norbert Kaula, Yohannes Iyassu, Michael Labbe
  • Patent number: 9767255
    Abstract: The present disclosure involves a method of entering data in a portable electronic device. A request is received from a healthcare professional to perform data entry in an input field. The request is received via a touch-sensitive user interface of the portable electronic device. In response to the request, a plurality of predefined suggestions is displayed as candidates for the data entry. A selection of one of the plurality of predefined suggestions by the healthcare professional is then detected. Thereafter, the selected predefined suggestion is automatically entered as the data entry in the input field.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: September 19, 2017
    Assignee: NUVECTRA CORPORATION
    Inventors: Norbert Kaula, Yohannes Iyassu, Seth Kaufman, Paul Landers