Patents by Inventor Norbert Maurer

Norbert Maurer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230138197
    Abstract: A filter holder for liposome extrusion includes a housing having an inlet configured to receive a material to be extruded and an outlet, and a filter support member disposed within the housing between the inlet and the outlet. The filter support member includes an upstream side having a filter support surface configured to support a membrane filter assembly, a downstream side opposite the upstream side, and a plurality of passages extending through the filter support member from the filter support surface to the downstream side. The filter holder also includes an outlet cavity in fluid communication with the outlet, and the filter holder is configured such that the material to be extruded flows through the membrane filter assembly and into the outlet cavity via the plurality of passages before being discharged through the outlet.
    Type: Application
    Filed: April 15, 2021
    Publication date: May 4, 2023
    Applicant: Evonik Canada Inc.
    Inventors: Alex Torres, David Jung, Norbert Maurer
  • Patent number: 11213770
    Abstract: A filter element for cleaning an operating liquid of a machine tool is provided with a pressure-stable jacket permitting flow therethrough. A filter medium is arranged in the pressure-stable jacket. A first end disc and a second end disc are seal-tightly connected to opposite ends of the filter medium. The filter medium surrounds an inner raw-side cavity. The pressure-stable jacket surrounds the filter medium and is connected fixedly to the first and second end discs. The first end disc has an inlet opening for the operating liquid. The second end disc has a drainage opening provided with a releasable closure element that closes the drainage opening.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: January 4, 2022
    Assignee: Mann+Hummel GmbH
    Inventors: Alexander Meier, Norbert Maurer, Andreas Panni, Dennis Stark, Michael Schulze
  • Publication number: 20200001210
    Abstract: A filter element for cleaning an operating liquid of a machine tool is provided with a pressure-stable jacket permitting flow therethrough. A filter medium is arranged in the pressure-stable jacket. A first end disc and a second end disc are seal-tightly connected to opposite ends of the filter medium. The filter medium surrounds an inner raw-side cavity. The pressure-stable jacket surrounds the filter medium and is connected fixedly to the first and second end discs. The first end disc has an inlet opening for the operating liquid. The second end disc has a drainage opening provided with a releasable closure element that closes the drainage opening.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Inventors: Alexander Meier, Norbert Maurer, Andreas Panni, Dennis Stark, Michael Schulze
  • Publication number: 20180221279
    Abstract: Drag derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drag derivatized with a weak-base moiety that facilitates active loading of the drag through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drag to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drag derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drags.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 9, 2018
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Patent number: 9968554
    Abstract: Drag derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drag derivatized with a weak-base moiety that facilitates active loading of the drag through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drag to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drag derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drags.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: May 15, 2018
    Assignee: The University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20140356417
    Abstract: Drag derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drag derivatized with a weak-base moiety that facilitates active loading of the drag through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drag to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drag derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drags.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 4, 2014
    Inventors: Peter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Patent number: 8790691
    Abstract: Drag derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drag derivatized with a weak-base moiety that facilitates active loading of the drag through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drag to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drag derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drags.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: July 29, 2014
    Assignee: The University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20140199374
    Abstract: Fully lipid-encapsulated therapeutic agent particles of a charged therapeutic agent are prepared by combining a lipid composition containing preformed lipid vesicles, a charged therapeutic agent, and a destabilizing agent to form a mixture of preformed vesicles and therapeutic agent in a destabilizing solvent. The destabilizing solvent is effective to destabilize the membrane of the preformed lipid vesicles without disrupting the vesicles. The resulting mixture is incubated for a period of time sufficient to allow the encapsulation of the therapeutic agent within the preformed lipid vesicles. The destabilizing agent is then removed to yield fully lipid-encapsulated therapeutic agent particles. The preformed lipid vesicles comprise a charged lipid which has a charge which is opposite to the charge of the charged therapeutic agent and a modified lipid having a steric barrier moiety for control of aggregation.
    Type: Application
    Filed: December 24, 2013
    Publication date: July 17, 2014
    Inventors: Norbert Maurer, Pieter R. Cullis, Kim F. Wong
  • Publication number: 20130273146
    Abstract: Fully lipid-encapsulated therapeutic agent particles of a charged therapeutic agent are prepared by combining a lipid composition containing preformed lipid vesicles, a charged therapeutic agent, and a destabilizing agent to form a mixture of preformed vesicles and therapeutic agent in a destabilizing solvent. The destabilizing solvent is effective to destabilize the membrane of the preformed lipid vesicles without disrupting the vesicles. The resulting mixture is incubated for a period of time sufficient to allow the encapsulation of the therapeutic agent within the preformed lipid vesicles. The destabilizing agent is then removed to yield fully lipid-encapsulated therapeutic agent particles. The preformed lipid vesicles comprise a charged lipid which has a charge which is opposite to the charge of the charged therapeutic agent and a modified lipid having a steric barrier moiety for control of aggregation.
    Type: Application
    Filed: March 7, 2013
    Publication date: October 17, 2013
    Inventors: Norbert Maurer, Pieter R. Cullis, Kim F. Wong
  • Patent number: 8545876
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: October 1, 2013
    Assignee: University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Patent number: 8545877
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: October 1, 2013
    Assignee: University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20130236534
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 12, 2013
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20130230583
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 5, 2013
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20130230582
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Application
    Filed: April 19, 2013
    Publication date: September 5, 2013
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Patent number: 8324410
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: December 4, 2012
    Assignee: The University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20120276207
    Abstract: Fully lipid-encapsulated therapeutic agent particles of a charged therapeutic agent are prepared by combining a lipid composition containing preformed lipid vesicles, a charged therapeutic agent, and a destabilizing agent to form a mixture of preformed vesicles and therapeutic agent in a destabilizing solvent. The destabilizing solvent is effective to destabilize the membrane of the preformed lipid vesicles without disrupting the vesicles. The resulting mixture is incubated for a period of time sufficient to allow the encapsulation of the therapeutic agent within the preformed lipid vesicles. The destabilizing agent is then removed to yield fully lipid-encapsulated therapeutic agent particles. The preformed lipid vesicles comprise a charged lipid which has a charge which is opposite to the charge of the charged therapeutic agent and a modified lipid having a steric barrier moiety for control of aggregation.
    Type: Application
    Filed: February 13, 2012
    Publication date: November 1, 2012
    Applicant: The University of British Columbia
    Inventors: Norbert Maurer, Kim F. Wong, Pieter R. Cullis
  • Publication number: 20120237591
    Abstract: Drug derivatives are provided herein which are suitable for loading into liposomal nanoparticle carriers. In some preferred aspects, the derivatives comprise a poorly water-soluble drug derivatized with a weak-base moiety that facilitates active loading of the drug through a LN transmembrane pH or ion gradient into the aqueous interior of the LN. The weak-base moiety can optionally comprise a lipophilic domain that facilitates active loading of the drug to the inner monolayer of the liposomal membrane. Advantageously, LN formulations of the drug derivatives exhibit improved solubility, reduced toxicity, enhanced efficacy, and/or other benefits relative to the corresponding free drugs.
    Type: Application
    Filed: May 8, 2012
    Publication date: September 20, 2012
    Applicant: The University of British Columbia
    Inventors: Pieter Cullis, Marcel Bally, Marco Ciufolini, Norbert Maurer, Igor Jigaltsev
  • Publication number: 20110177130
    Abstract: Fully lipid-encapsulated therapeutic agent particles of a charged therapeutic agent are prepared by combining a lipid composition containing preformed lipid vesicles, a charged therapeutic agent, and a destabilizing agent to form a mixture of preformed vesicles and therapeutic agent in a destabilizing solvent. The destabilizing solvent is effective to destabilize the membrane of the preformed lipid vesicles without disrupting the vesicles. The resulting mixture is incubated for a period of time sufficient to allow the encapsulation of the therapeutic agent within the preformed lipid vesicles. The destabilizing agent is then removed to yield fully lipid-encapsulated therapeutic agent particles. The preformed lipid vesicles comprise a charged lipid which has a charge which is opposite to the charge of the charged therapeutic agent and a modified lipid having a steric barrier moiety for control of aggregation.
    Type: Application
    Filed: August 30, 2010
    Publication date: July 21, 2011
    Applicant: THE UNIVERSITY OF BRITISH COLUMBIA
    Inventors: Norbert Maurer, Kim F. Wong, Pieter R. Cullis
  • Patent number: 7811602
    Abstract: The present invention includes novel liposomes comprising dihydrosphingomyelin. The invention also includes compositions comprising these liposomes and a therapeutic agent, in addition to methods and kits for delivering a therapeutic agent or treating a disease, e.g., a cancer, using these compositions.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: October 12, 2010
    Assignee: Tekmira Pharmaceuticals Corporation
    Inventors: Pieter R Cullis, Thomas D Madden, Michael J Hope, Steven M Ansell, Barbara L S Mui, Sean C Semple, Norbert Maurer
  • Patent number: 7387726
    Abstract: An oil filter for an internal combustion engine with a cup-shaped housing that is releasably connectable to a receiving head. The housing has a first interlocking element that extends across at least a portion of the outer circumference of the housing and is interrupted by at least one axially extending recess. The filter element has a liquid-tight canister provided on its outer surface with second interlocking elements, which fit into the recesses of corresponding first interlocking elements when the filter element is installed in the housing.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: June 17, 2008
    Assignee: Mann & Hummel GmbH
    Inventors: Michael Wolf, Joachim Stinzendoerfer, Karlheinz Muenkel, Ralf Bauder, Norbert Maurer